Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

PTB stellt erstes Bose-Einstein-Kondensat mit Calciumatomen her

22.09.2009
Physikern in der Physikalisch-Technischen Bundesanstalt (PTB) ist es weltweit zum ersten Mal gelungen, ein Bose-Einstein-Kondensat aus dem Erdalkalielement Calcium herzustellen. Die Verwendung von Erdalkali-Atomen schafft neue Möglichkeiten für Präzisionsmessungen, beispielsweise zur Bestimmung von Gravitationsfeldern.

Der Physiker und Nobelpreisträger Wolfgang Ketterle beschrieb es einmal als "Identitätskrise" der Atome: Fängt man Atome in einer Falle und kühlt sie auf eine Temperatur nahe dem absoluten Nullpunkt, kondensieren sie - ähnlich wie Dampf zu Wasser - und nehmen einen völlig neuen Zustand an: Sie werden ununterscheidbar.


Wie eine Riesenwelle inmitten eines Meeres aus gasförmigen Calciumatomen erhebt sich das Bose-Einstein-Kondensat. Es besteht aus rund 20 000 Atomen, die normalerweise für das menschliche Auge nicht sichtbar sind. Doch die Wellen, durch die Atome quantenmechanisch beschrieben werden, schwingen im Kondensat alle synchron und addieren sich zu einer dichten Riesenwelle. Auf diese Weise wird die mikroskopische Anhäufung von Atomen plötzlich makroskopisch und damit sichtbar. Quelle: PTB

Dieser kollektive Zustand heißt nach seinen geistigen Vätern Bose-Einstein-Kondensat. Physikern in der Physikalisch-Technischen Bundesanstalt (PTB) ist es nun weltweit zum ersten Mal gelungen, ein Bose-Einstein-Kondensat aus dem Erdalkalielement Calcium herzustellen. Die Verwendung von Erdalkali-Atomen schafft neue Möglichkeiten für Präzisionsmessungen, beispielsweise zur Bestimmung von Gravitationsfeldern. Denn im Unterschied zu bisherigen Bose-Einstein-Kondensaten aus Alkali-Atomen reagieren Erdalkalimetalle eine Million mal empfindlicher auf die Wellenlänge bei optischen Anregungen - eine Tatsache, die sich für super-exakte Messungen verwenden lässt. Die Ergebnisse sind nun in Physical Review Letters veröffentlicht worden.

Der quantenmechanische Hintergrund

Atome in Gasen verhalten sich bei Zimmertemperatur wie ein wilder Haufen: Sie fliegen mit unterschiedlichen Geschwindigkeiten durcheinander, prallen zusammen und werden anschließend in eine neue Richtung weitergeschleudert. Doch bei extrem niedrigen Temperaturen nahe dem absoluten Nullpunkt (- 273,15 ºC) kommen sie nahezu zum Stillstand. Zu diesem Zeitpunkt nun kommen die Gesetze der Quantenmechanik zum Tragen, die im Alltag nicht zu beobachten sind und so manchen Nicht-Physiker verstören. Die Vorstellung von Atomen als kleine Kugeln funktioniert nun nicht mehr. Vielmehr lassen sich Atome nun nur noch quantenmechanisch durch Wellen beschrieben. Wie Wasserwellen können sie sich gegenseitig überlagern. Bei einem Bose-Einstein-Kondensat sind die Wellenfunktionen von bis zu einer Million Atome so synchronisiert, dass sie sich zu einer Riesenwelle auftürmen. Diese Gebilde können bis zu einem Millimeter groß und dann photographiert werden. Der Mikrokosmos stellt sich makroskopisch dar - er wird für den Betrachter sichtbar. In den letzten Jahren wurden solche Bose-Einstein-Kondensate für vielfältige Untersuchungen zu den Grundlagen der Quantenmechanik, als Modellsystem für Festkörper oder in der Quanteninformation eingesetzt.

Die Anwendungsmöglichkeiten

Die Wellenmuster angeregter Bose-Einstein-Kondensate reagieren sehr empfindlich auf ihre Umgebung. So lassen sich durch Untersuchung dieser Muster hochempfindliche interferometrische Sensoren erzeugen, mit denen man z.B. Magnetfelder oder Gravitation messen kann. Für die Manipulation und Anregung von Kondensaten wird Licht verwendet. Alle weltweit bisher erzeugten Bose-Einstein-Kondensate haben einen gemeinsamen Nachteil: Ihre breiten optischen Übergänge lassen keine Präzisionsanregungen zu. Bei Bose-Einstein-Kondensaten aus Erdalkaliatomen (z.B. Calcium und Strontium, die beide an der PTB auf ihre Eignung als optische Uhren untersucht werden) bieten deren superschmale optische Übergänge ganz neue Möglichkeiten für Präzisionsuntersuchungen. Denkbar ist deren Einsatz auf Satelliten z.B. durch Geophysiker, die die Verformung der Erde und damit die Veränderung der Gravitation erforschen.

Das Verfahren

In der PTB ist es nun weltweit erstmalig gelungen, ein Bose-Einstein-Kondensat aus Erdalkaliatomen herzustellen. Dazu wurden 2 o 106 in einer magneto-optischen Falle vorgekühlte Calciumatome mit einer Temperatur von 20 µK in eine optische Pinzette geladen. Durch Abschwächen der Haltekraft verdampfen heiße Atome, wodurch die übrig bleibenden Atome gekühlt werden. Bei einer Temperatur von typischerweise 200 nK wird die kritische Temperatur mit 105 Atomen erreicht. Davon können etwa 2 o 104 Atome zu einem reinen Kondensat gekühlt werden.

Ansprechpartner:
Dr. Sebastian Kraft, Quantenoptik mit kalten Atomen, Fachbereich 4.32, Tel.: (0531) 592-4327, E-Mail: Sebastian.Kraft@ptb.de
Originalveröffentlichung
Sebastian Kraft, Felix Vogt, Oliver Appel, Fritz Riehle, and Uwe Sterr: Bose-Einstein Condensation of Alkaline Earth Atoms: 40Ca, Physical Review Letters (Vol.103, No.13)

URL: http://link.aps.org/abstract/PRL/v103/e130401

Imke Frischmuth | idw
Weitere Informationen:
http://www.ptb.de/
http://link.aps.org/abstract/PRL/v103/e130401

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ruckartige Bewegung schärft Röntgenpulse
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Zirkuläre Wirtschaft: Neues Wirtschaftsmodell für die chemische Industrie?

28.07.2017 | Studien Analysen

Assistenzsysteme für die Blechumformung

28.07.2017 | Maschinenbau

Ruckartige Bewegung schärft Röntgenpulse

28.07.2017 | Physik Astronomie