Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

PTB-Forscher können Ertrag von Solarzellen unter realen Bedingungen bestimmen

30.05.2016

An einem neuartigen Messplatz messen die Wissenschaftler Referenzsolarzellen mit bisher unerreichter Genauigkeit

Solarzellen werden im Labor bisher unter einheitlich festgelegten Bedingungen getestet. Da die realen Bedingungen, wie die Temperatur oder der Einfallswinkel des Lichts, je nach Region und Klima davon abweichen, lässt sich die Leistungsfähigkeit der Zellen im Einsatz vor Ort nur schwer ermitteln.


In einem Labor der PTB werden Solarzellen mit Weißlicht und einfarbigem Licht bestrahlt und kalibriert.

(Quelle: PTB)

Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) ist es gelungen, mittels eines laserbasierten spektralen Messverfahrens Solarzellen so umfassend zu charakterisieren, dass sich ihr Ertrag für jede beliebige klimatische Bedingung berechnen lässt.

Möglich ist dies durch die Kalibrierung von Referenzsolarzellen bei Standard-Testbedingungen (STC) mit einer weltweit einmaligen Messunsicherheit von weniger als 0,4 Prozent. Da der Markt für erneuerbare Energien boomt, wird es künftig immer wichtiger, die Leistungsfähigkeit der weltweit hergestellten Solarzellen präzise zu vergleichen.

Solarzelle ist nicht gleich Solarzelle. Sie unterscheiden sich hinsichtlich ihres Wirkungsgrades. Das heißt, die Zelle eines Herstellers kann bei einer bestimmten Sonneneinstrahlung (Bestrahlungsstärke) eine höhere elektrische Leistung erzielen als die gleichgroße Zelle eines anderen Herstellers. Während sich hierbei die elektrische Leistung relativ einfach messen lässt, ist die Bestimmung der Bestrahlungsstärke deutlich schwieriger.

Hierfür werden von der PTB Referenzsolarzellen kalibriert, deren Kurzschlussstrom ein Maß für die Bestrahlungsstärke darstellt. Der Kurzschlussstrom ist die größtmögliche Stromstärke, die ein Modul oder eine Zelle erzeugen kann. Gemessen wird bei Standard-Testbedingungen: Die Zelle wird auf Basis eines genormten Sonnenspektrums mit 1000 Watt pro Quadratmeter bestrahlt und in der Solarzelle herrschen 25 Grad Celsius.

Das Normspektrum, das sogenannte „Air Mass 1.5“ (AM1.5), entspricht der spektralen Zusammensetzung von Licht, das in einem Winkel von 48,19 Grad einfällt. So werden Referenzsolarzellen kalibriert, die von der Industrie, technischen Überwachungsinstitutionen oder Fachlaboren genutzt werden können. Problematisch ist nur, dass beispielsweise das Spektrum des Sonnenlichts je nach Tages- und Jahreszeit sowie nach Atmosphärenzusammensetzung variiert. Ebenso weichen Temperatur, Einfallswinkel und Bestrahlungsstärke je nach Einsatzort der Solarzellen von den oben genannten Standardtestbedingungen ab. Insofern lassen sich bei STC nur schwer Ertragsprognosen für die weltweit verwendeten Solarzellen ermitteln.

Daher hat die PTB ihren Solarzellen-Messplatz erweitert. Für die Vergleichsmessungen verwenden die Braunschweiger Wissenschaftler das sogenannte Differential-Spectral-Responsibility-(DSR)-Verfahren, das jüngst zum Laser-DSR-Verfahren weiterentwickelt wurde.

Damit lassen sich die Testbedingungen an reale klimatische Bedingungen anpassen, beispielsweise an Solarzellen-Temperaturen zwischen 15 °C und 75 °C und eine Bestrahlungsstärke von 0 W/m2 bis über 1100 W/m2. Zudem können die Forscher die Wellenlänge und den Einfallswinkel des Lichts variieren. Alle diese Messungen erlauben schließlich einen Vergleich der Leistungsfähigkeit verschiedener Solarzellen. So können Betreiber von Solaranlagen künftig von Kalibrierlaboratorien prüfen lassen, welches Modul für das jeweilige Klima vor Ort am besten geeignet ist.

Bei herkömmlichen (lampenbasierten) DSR-Verfahren wird Weißlicht mittels eines sogenannten Monochromators in einzelne Wellenlängen zerlegt und in kleinen Portionen durch eine Optik auf die Solarzelle gelenkt. So lassen sich alle Farben von ultraviolettem bis infrarotem Licht einstellen. Gleichzeitig wird die Zelle mit weißem Licht bestrahlt, denn nur so werden die für die Messung benötigten 1000 Watt pro Quadratmeter erreicht.

Doch hierbei entsteht ein Problem: Der durch Weißlicht erzeugte Strom ist um bis zu eine Milliarde Mal größer als der durch einfarbiges Licht erzeugte Strom. Bei den Messungen stört dann der große Strom das Signal des kleinen Stroms – man spricht von einem Signal-zu-Rausch-Problem.

Mittels des laserbasierten DSR-Verfahrens ist es den Wissenschaftlern in der PTB gelungen, den Störfaktor je nach Wellenlänge um das 100- bis 10 000fache zu reduzieren. Damit wurde die gesamte Messunsicherheit verbessert – auf den Rekordwert von weniger als 0,4 Prozent. Ein weiterer Vorteil: Bisher konnten nur Referenzsolarzellen einer Größe von 20 mm x 20 mm kalibriert werden. Jetzt lassen sich Zellen mit bis zu 15 cm x 15 cm (6 Zoll) kalibrieren. Von diesem Fortschritt werden vorerst hauptsächlich die Kalibrierlaboratorien profitieren, letztlich aber auch die Technologie. „Denn eine funktionierende globale Kalibrierinfrastruktur ist notwendig für den Erfolg einer Technologie auf dem Weltmarkt“, ist sich Ingo Kröger, Mitarbeiter in der Arbeitsgruppe Solarzellen in der PTB, sicher.
(ms/ptb)

Ansprechpartner in der PTB:
Dr. Stefan Winter, Arbeitsgruppenleiter 4.14 Solarzellen, Telefon: (0531) 592-4140, E-Mail: stefan.winter@ptb.de

Dr. Ingo Kröger, PTB-Arbeitsgruppe 4.14 Solarzellen, Telefon: (0531) 592-4147, E-Mail: ingo.kroeger@ptb.de

Dipl.-Journ. Erika Schow | Physikalisch-Technische Bundesanstalt (PTB)
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie