Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

PTB-Forscher können Ertrag von Solarzellen unter realen Bedingungen bestimmen

30.05.2016

An einem neuartigen Messplatz messen die Wissenschaftler Referenzsolarzellen mit bisher unerreichter Genauigkeit

Solarzellen werden im Labor bisher unter einheitlich festgelegten Bedingungen getestet. Da die realen Bedingungen, wie die Temperatur oder der Einfallswinkel des Lichts, je nach Region und Klima davon abweichen, lässt sich die Leistungsfähigkeit der Zellen im Einsatz vor Ort nur schwer ermitteln.


In einem Labor der PTB werden Solarzellen mit Weißlicht und einfarbigem Licht bestrahlt und kalibriert.

(Quelle: PTB)

Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) ist es gelungen, mittels eines laserbasierten spektralen Messverfahrens Solarzellen so umfassend zu charakterisieren, dass sich ihr Ertrag für jede beliebige klimatische Bedingung berechnen lässt.

Möglich ist dies durch die Kalibrierung von Referenzsolarzellen bei Standard-Testbedingungen (STC) mit einer weltweit einmaligen Messunsicherheit von weniger als 0,4 Prozent. Da der Markt für erneuerbare Energien boomt, wird es künftig immer wichtiger, die Leistungsfähigkeit der weltweit hergestellten Solarzellen präzise zu vergleichen.

Solarzelle ist nicht gleich Solarzelle. Sie unterscheiden sich hinsichtlich ihres Wirkungsgrades. Das heißt, die Zelle eines Herstellers kann bei einer bestimmten Sonneneinstrahlung (Bestrahlungsstärke) eine höhere elektrische Leistung erzielen als die gleichgroße Zelle eines anderen Herstellers. Während sich hierbei die elektrische Leistung relativ einfach messen lässt, ist die Bestimmung der Bestrahlungsstärke deutlich schwieriger.

Hierfür werden von der PTB Referenzsolarzellen kalibriert, deren Kurzschlussstrom ein Maß für die Bestrahlungsstärke darstellt. Der Kurzschlussstrom ist die größtmögliche Stromstärke, die ein Modul oder eine Zelle erzeugen kann. Gemessen wird bei Standard-Testbedingungen: Die Zelle wird auf Basis eines genormten Sonnenspektrums mit 1000 Watt pro Quadratmeter bestrahlt und in der Solarzelle herrschen 25 Grad Celsius.

Das Normspektrum, das sogenannte „Air Mass 1.5“ (AM1.5), entspricht der spektralen Zusammensetzung von Licht, das in einem Winkel von 48,19 Grad einfällt. So werden Referenzsolarzellen kalibriert, die von der Industrie, technischen Überwachungsinstitutionen oder Fachlaboren genutzt werden können. Problematisch ist nur, dass beispielsweise das Spektrum des Sonnenlichts je nach Tages- und Jahreszeit sowie nach Atmosphärenzusammensetzung variiert. Ebenso weichen Temperatur, Einfallswinkel und Bestrahlungsstärke je nach Einsatzort der Solarzellen von den oben genannten Standardtestbedingungen ab. Insofern lassen sich bei STC nur schwer Ertragsprognosen für die weltweit verwendeten Solarzellen ermitteln.

Daher hat die PTB ihren Solarzellen-Messplatz erweitert. Für die Vergleichsmessungen verwenden die Braunschweiger Wissenschaftler das sogenannte Differential-Spectral-Responsibility-(DSR)-Verfahren, das jüngst zum Laser-DSR-Verfahren weiterentwickelt wurde.

Damit lassen sich die Testbedingungen an reale klimatische Bedingungen anpassen, beispielsweise an Solarzellen-Temperaturen zwischen 15 °C und 75 °C und eine Bestrahlungsstärke von 0 W/m2 bis über 1100 W/m2. Zudem können die Forscher die Wellenlänge und den Einfallswinkel des Lichts variieren. Alle diese Messungen erlauben schließlich einen Vergleich der Leistungsfähigkeit verschiedener Solarzellen. So können Betreiber von Solaranlagen künftig von Kalibrierlaboratorien prüfen lassen, welches Modul für das jeweilige Klima vor Ort am besten geeignet ist.

Bei herkömmlichen (lampenbasierten) DSR-Verfahren wird Weißlicht mittels eines sogenannten Monochromators in einzelne Wellenlängen zerlegt und in kleinen Portionen durch eine Optik auf die Solarzelle gelenkt. So lassen sich alle Farben von ultraviolettem bis infrarotem Licht einstellen. Gleichzeitig wird die Zelle mit weißem Licht bestrahlt, denn nur so werden die für die Messung benötigten 1000 Watt pro Quadratmeter erreicht.

Doch hierbei entsteht ein Problem: Der durch Weißlicht erzeugte Strom ist um bis zu eine Milliarde Mal größer als der durch einfarbiges Licht erzeugte Strom. Bei den Messungen stört dann der große Strom das Signal des kleinen Stroms – man spricht von einem Signal-zu-Rausch-Problem.

Mittels des laserbasierten DSR-Verfahrens ist es den Wissenschaftlern in der PTB gelungen, den Störfaktor je nach Wellenlänge um das 100- bis 10 000fache zu reduzieren. Damit wurde die gesamte Messunsicherheit verbessert – auf den Rekordwert von weniger als 0,4 Prozent. Ein weiterer Vorteil: Bisher konnten nur Referenzsolarzellen einer Größe von 20 mm x 20 mm kalibriert werden. Jetzt lassen sich Zellen mit bis zu 15 cm x 15 cm (6 Zoll) kalibrieren. Von diesem Fortschritt werden vorerst hauptsächlich die Kalibrierlaboratorien profitieren, letztlich aber auch die Technologie. „Denn eine funktionierende globale Kalibrierinfrastruktur ist notwendig für den Erfolg einer Technologie auf dem Weltmarkt“, ist sich Ingo Kröger, Mitarbeiter in der Arbeitsgruppe Solarzellen in der PTB, sicher.
(ms/ptb)

Ansprechpartner in der PTB:
Dr. Stefan Winter, Arbeitsgruppenleiter 4.14 Solarzellen, Telefon: (0531) 592-4140, E-Mail: stefan.winter@ptb.de

Dr. Ingo Kröger, PTB-Arbeitsgruppe 4.14 Solarzellen, Telefon: (0531) 592-4147, E-Mail: ingo.kroeger@ptb.de

Dipl.-Journ. Erika Schow | Physikalisch-Technische Bundesanstalt (PTB)
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE