Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Proton - kleiner als gedacht

08.07.2010
Internationales Forscherteam erhält unerwartet kleinen Protonenradius mittels hochpräziser Spektroskopie von exotischem Wasserstoff.

Das Proton, einer der fundamentalen Bausteine der Materie, ist noch kleiner als bisher angenommen. Dies ergaben Messungen, die jetzt ein internationales Forscherteam am unter maßgeblicher Beteiligung von Wissenschaftlern des Max-Planck-Instituts für Quantenoptik in Garching bei München, der Ludwig-Maximilians-Universität München (LMU) und des Instituts für Strahlwerkzeuge (IFSW) der Universität Stuttgart am Paul-Scherrer-Institut (PSI) im schweizerischen Villigen durchgeführt hat (Nature, 8. Juli 2010).


In einer Messkammer für Protonen: von links tritt der Myonenstrahl durch die ringförmigen Elektroden. Im Raum zwischen den beiden grau-metallischen Balken unter der Glasscheibe treffen die Myonen auf Wasserstoffgas - und verdrängen aus einem Teil der Atome die Elektronen. Diesen Prozess registriert der Apparat und schießt durch das Loch im unteren Balken einen Laser auf den myonischen Wasserstoff, um Feinheiten des atomaren Aufbaus und somit letztlich den Protonenradius zu enthüllen. Bild: Randolf Pohl / MPI für Quantenoptik

Noch rätseln die Wissenschaftler, wie diese Diskrepanz zu deuten ist. Letztendlich könnte das Ergebnis sogar die Gültigkeit der fundamentalen Theorie der Wechselwirkung von Licht und Materie in Frage stellen, die bis heute jeder Überprüfung standgehalten hat; sie könnte aber auch eine Änderung der bislang am genauesten bekannten Naturkonstanten implizie-ren. Für die neue Messung erzeugten die Wissenschaftler eine exotische Variante von Was-serstoff, bei der statt eines Elektrons ein negativ geladenes Myon den Atomkern, das Proton, umkreist. Da das Myon rund 200 Mal schwerer als das Elektron ist, kommt es dem Pro-ton viel näher und „spürt“ buchstäblich dessen Ausdehnung. Mit einem speziell dafür ent-wickelten Laser und einer neuartigen, vom PSI entwickelten Myonenquelle vermochten die Physiker diesen Effekt quantitativ zu bestimmen und den Protonenradius daraus mit höchster Präzision zu ermitteln.

Das Proton ist einer der drei Grundbausteine der Materie: zusammen mit dem Neutron baut es den Atomkern auf, der von Elektronen umkreist wird. Chemische Elemente definieren sich über die Zahl der Protonen im Atomkern. Wasserstoff ist das einfachste aller chemischen Elemente. Sein Atomkern besteht aus einem einzigen Proton, das von einem Elektron umkreist wird. Viele grund-legende Fragen der Physik ließen sich in der Vergangenheit durch eine Bestimmung der Eigen-schaften von Wasserstoff beantworten. Während Elektronen und Myonen allem Anschein nach punktförmig sind, besteht das Proton aus Quarks und ist daher ausgedehnt.

Um den Protonenradius zu bestimmen, ersetzten die Wissenschaftler das einzelne Hüllenelektron im Wasserstoffatom durch ein ebenfalls negativ geladenes Myon. Myonen gleichen Elektronen, sind aber 200mal schwerer. Nach den Regeln der Quantenmechanik umkreisen sie daher das Pro-ton auf einer rund 200mal engeren Bahn. Deren Eigenschaften hängen deshalb viel empfindlicher vom Durchmesser des Protons ab als in gewöhnlichem Wasserstoff: das Myon „spürt“ die Aus-dehnung des Protons und passt seine Bahn daran an. „Genauer gesagt bewirkt die Ausdehnung des Protons eine Änderung der sogenannten Lamb-Verschiebung der Energieniveaus im myonischen Wasserstoff“, erläutert Dr. Randolf Pohl aus der Abteilung Laserspektroskopie von Prof. Theodor W. Hänsch (Lehrstuhl für Experimentalphysik an der LMU und Direktor am MPQ). „Daher konnten wir den Protonenradius über die Messung der Lamb-Verschiebung ermitteln.“

Bereits in den 70er Jahren kam die Idee auf, diese Untersuchungen an myonischem Wasserstoff durchzuführen, bei dem das Hüllenelektron durch ein Myon ersetzt ist. Dass von der Idee bis zur Realisierung eines solchen Experimentes fast 40 Jahre vergingen, liegt an den vielen Hürden, die auf diesem Weg zu nehmen waren. „Um überhaupt eine Chance zu haben, den gesuchten Übergang zu messen, mussten wir an der Verfeinerung mehrerer experimenteller Komponenten gleich-zeitig arbeiten“, erklärt Dr. Franz Kottmann vom PSI, einer der Initiatoren des Experiments. „Wir brauchen für dieses Experiment langsame Myonen, damit die Wasserstoffatome Gelegenheit ha-ben, die Teilchen einzufangen. Obwohl wir möglichst viele myonische Wasserstoffatome haben möchten, müssen wir mit verdünntem Wasserstoff arbeiten, weil die angeregten myonischen Atome sonst aufgrund von Stößen zu schnell zerfielen. Und schließlich brauchen wir, um den Über-gang resonant anzuregen, einen Laser, dessen Frequenz sich in kleinen Schritten einstellen lässt.“ Prof. Thomas Graf vom IFSW ergänzt: „Die spezifischen Anforderungen an die Lasertechnik – die Lichtpulse müssen innerhalb von Nanosekunden nach der Registrierung eines Myons auf das Wasserstofftarget abgefeuert werden – wurden schliesslich durch die Stuttgarter Entwicklung eines Scheibenlasers erfüllt.“

In einem gemeinsamen Kraftakt mehrerer Forschergruppen, die jeweils ihre Expertise auf den Ge-bieten der Beschleunigerphysik, der Atomphysik sowie den Laser- und Detektortechnologien ein-brachten, gelang schließlich der Durchbruch. Die ersten Messungen in den Jahren 2002, 2003 und 2007 waren allerdings nicht gerade ermutigend. Obwohl das Experiment im Prinzip funktionierte, gab es keine Anzeichen für die erwartete Resonanz. „Zunächst dachten wir, unsere Laser seien nicht gut genug. Deswegen bauten wir Teile des Lasersystems neu mit der Stuttgarter Scheibenla-ser-Technologie auf. Doch dann zeichnete sich ab, dass wir schlicht an der falschen Stelle gesucht hatten: offenbar war die theoretische Vorhersage für die Frequenz des Übergangs falsch“, erläutert Dr. Aldo Antognini vom PSI.

Nach einer dreimonatigen Aufbauphase und drei Wochen Messzeit, am Abend des 5. Juli 2009, war es so weit: die Wissenschaftler konnten die gesuchte Resonanz klar nachweisen. Der daraus abgeleiteten Wert von 0,84184 Femtometern (1 Femtometer = 0.000 000 000 000 001 Meter) für den Protonenradius ist rund zehnmal genauer, aber in starkem Widerspruch zu dem bisher aner-kannten Wert von 0,8768 Femtometern. Noch diskutieren die Wissenschaftler über die möglichen Ursachen der beobachteten Diskrepanz. Derzeit wird alles auf den Prüfstand gestellt: frühere Prä-zisionsmessungen, die aufwendigen Rechnungen der Theoretiker, und eventuell könnte sogar die am besten bestätigte physikalische Theorie, die Quantenelektrodynamik, angezweifelt werden. „Bevor wir aber die Gültigkeit der Quantenelektrodynamik in Frage stellen, müssen erst einmal die Theoretiker prüfen, ob sie sich nicht an der einen oder anderen Stelle verrechnet haben“, meint dazu Dr. Pohl. Einen Hinweis, welche Interpretation die richtige ist, wird möglicherweise das nächste, für 2012 geplante Projekt liefern. Dann wollen die Forscher myonisches Helium spektro-skopisch untersuchen und dessen Kernradius bestimmen. Meyer-Streng(MPQ)/Piwnicki(PSI)

Originalveröffentlichung:
Randolf Pohl, Aldo Antognini, François Nez, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Luis M. P. Fernandes, Adolf Giesen, Thomas Graf, Theodor W. Hänsch, Paul Indelicato, Lucile Julien, Cheng-Yang Kao, Paul Knowles, José A. M. Lopes, Eric-Olivier Le Bigot, Yi-Wei Liu, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, Paul Rabinowitz, Joaquim M. F. dos Santos, Lukas A. Schaller, Karsten Schuhmann, Catherine Schwob, David Taqqu, João F. C. A. Veloso & Franz Kottmann
„The size of the proton“
Nature, Doi:10.1038/nature09250, 8 July 2010
Filme über das Experiment: www.psi.ch/media/filme-protonenradius
Fotos zum Herunterladen: www.psi.ch/media/fotos-protonenradius
An dem hier beschriebenen Experiment sind zahlreiche Einrichtungen aus verschiedenen Ländern beteiligt. Die wichtigsten sind: Max-Planck-Institut für Quantenoptik, Garching bei München, Ludwig-Maximilians-Universität München, Institut für Strahlwerkzeuge der Universität Stuttgart und Dausinger & Giesen GmbH, Stuttgart, Deutschland, Paul Scherrer Institut PSI, Villigen, Schweiz, Institut für Teilchenphysik, Eidgenössische Technische Hochschule ETH Zürich, Schweiz, Labora-toire Kastler Brossel, Paris, Frankreich, Departamento de Física, Universidade de Coimbra, Coimbra, Portugal, Departement für Physik, Universität Freiburg, Freiburg, Schweiz.
Kontakt:
Dr. Randolf Pohl
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 281
Fax: +49 - 89 / 32905 200
E-Mail: randolf.pohl@mpq.mpg.de
https://muhy.web.psi.ch/wiki/
Prof. Dr. Theodor W. Hänsch
Lehrstuhl für Experimentalphysik,
Ludwig-Maximilians-Universität, München
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1,
85748 Garching
Tel.: +49 - 89 / 32905 702/712
Fax: +49 - 89 / 32905 312
E-Mail: t.w.haensch@mpq.mpg.de
Prof. Thomas Graf
Universität Stuttgart
Institut für Strahlwerkzeuge
Pfaffenwaldring 43
D-70569 Stuttgart
Telefon: +49 (0)711 68566840
E-Mail: graf@ifsw.uni-stuttgart.de
Dr. Franz Kottmann
Paul Scherrer Institut
CH-5232 Villigen
Tel.: +41 (0)56 310 3502
E-Mail: franz.kottmann@psi.ch
Dr. Aldo Antognini
Paul Scherrer Institut
CH-5232 Villigen
Tel.: +41 (0)56 310 4614
+41 (0)44 633 2031
E-Mail: aldo.antognini@psi.ch

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen