Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Powering lasers through heat

13.11.2012
In micro electronics heat often causes problems and engineers have to put a lot of technical effort into cooling, for example micro chips, to dissipate heat that is generated during operation.
Innsbruck physicists have now suggested a concept for a laser that could be powered by heat. This idea may open a completely new way for cooling microchips.

Since its invention 50 years ago, laser light has conquered our daily life. Lasers of varying wave lengths and power are used in many parts of our life, from consumer electronics to telecommunication and medicine. However, not all wave lengths have been equally well researched. For the far infrared and terahertz regime quantum cascade lasers are the most important source of coherent radiation. Light amplification in such a cascade laser is achieved through a repeated pattern of specifically designed semi-conductor layers of diverse doping through which electric current is running.

Schematic picture of a quantum cascade laser. The layers of different semiconductor material constitute the bandstructure shown in the inset.

Grafik: Christoph Deutsch

“The electrons are transferred through this structure in a specific series of tunneling processes and quantum leaps, emitting coherent light particles,” explains Helmut Ritsch, Institute for Theoretical Physics, University of Innsbruck, the functioning of such a laser. “Between these layers the electrons collide with other particles, which heats the laser.” Thus, quantum cascade lasers only work as long as they are strongly cooled. When too much heat is produced, the laser light extinguishes.

Revolutionary concept

When looking for ways to reduce heat in lasers, PhD student Kathrin Sandner and Helmut Ritsch came up with a revolutionary idea: The theoretical physicists suggest using heat to power the laser. In their work, recently published in Physical Review Letters, the two physicists propose the theory that the heating effect in quantum cascade lasers could not only be avoided but, in fact, reversed through a cleverly-devised modification of the thickness of the semiconductor layers. “A crucial part is to spatially separate the cold and warm areas in the laser,” explains Kathrin Sandner.
“In such a temperature gradient driven laser, electrons are thermally excited in the warm area and then tunnel into the cooler area where photons are emitted.” This produces a circuit where light particles are emitted and heat is absorbed from the system simultaneously. “Between the consecutive emissions of light particles a phonon is absorbed and the laser is cooled. When we develop this idea further, we see that the presence of phonons may be sufficient to provide the energy for laser amplification,” says Kathrin Sandner. Such a laser could be powered without using electric current.

“Of course, it is quite a challenge to implement this concept in an experiment,” says Helmut Ritsch. “But if we are successful, it will be a real technological innovation.” The physical principle behind the idea could already be applied to existing quantum cascade lasers, where it could provide internal cooling. This simplified concept seems to be technically feasible and is already being examined by experimental physicists.
Elegant idea with technical potential

“Apart from the conceptual elegance of this idea, a completely new way may open up of using heat in microchips in a beneficial way instead of having to dissipate it by cooling,” says an excited Helmut Ritsch about the work of his student. Kathrin Sandner majored in physics in Freiburg, Germany, and has worked as a researcher at the Institute for Theoretical Physics, University of Innsbruck, since 2009. “If you want to do research in quantum optics, Innsbruck is the place to go,” says Sandner about her motivation to work in Innsbruck. Kathrin Sandner was supported by the DOC-fFORTE doctoral program of the Austrian Academy of Sciences and by a PhD grant from the University of Innsbruck. She is about to finish her PhD program.

Publication: Temperature Gradient Driven Lasing and Stimulated Cooling. K. Sandner, H. Ritsch. Phys. Rev. Lett. 109, 193601 (2012) DOI:10.1103/PhysRevLett.109.193601 http://dx.doi.org/10.1103/PhysRevLett.109.193601

Rückfragehinweis

Prof. Helmut Ritsch
Institute of Theoretical Physics
University of Innsbruck
Telefon: +43 512 507-52213
E-Mail: helmut.ritsch@uibk.ac.at
Dipl.-Phys. Kathrin Sandner
Institute of Theoretical Physics
University of Innsbruck
Telefon: +43 512 507-52224
E-Mail: kathrin.sandner@uibk.ac.at
Christian Flatz
Public Relations
University of Innsbruck
Telefon: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften