Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plötzlich magnetisch

02.04.2013
Das kam überraschend: Ordnet man Zinn-Atome auf einem Siliziumträger in einer besonderen Art und Weise an, wird das Material magnetisch. Physikern der Universität Würzburg ist dieses Experiment gelungen. Es eröffnet möglicherweise einen neuen Weg der Informationsverarbeitung.
Man nehme eine kleine, dünne Scheibe aus Silizium und baue an deren Oberfläche Zinn-Atome in einem regelmäßigen Muster ein. Obwohl beide Ausgangsmaterialien keinerlei magnetische Eigenschaften besitzen, tritt in dieser Kombination Magnetismus auf. Ein überraschender Effekt. Physikern der Universität Würzburg ist es gelungen, ihn experimentell zu erzeugen. Das renommierte Fachjournal Nature Communications berichtet darüber in seiner neuesten Ausgabe.

Regelmäßige Muster machen’s möglich

„Regelmäßig geordnete Muster von Elektronenspins“, sind nach Aussagen von Dr. Jörg Schäfer verantwortlich für den unerwarteten Magnetismus. Schäfer ist Privatdozent am Lehrstuhl für Experimentelle Physik IV der Universität Würzburg. In der Arbeitsgruppe von Lehrstuhlinhaber Professor Ralph Claessen hat er die entscheidenden Experimente betreut; die theoretische Simulation fand am Lehrstuhl für Theoretische Physik I bei Professor Werner Hanke statt.

Spin: Das ist der innere Drehimpuls von Elektronen. Weil Elektronen elektrisch geladen sind, hat diese Drehbewegung zur Folge, dass sie automatisch auch ein magnetisches Feld aufbauen. Sie sind also selbst kleine Magnete. Im Normalfall hat das allerdings keine Konsequenzen: Die große Anzahl von Elektronen selbst in winzigen Mengen einer Substanz und die Tatsache, dass sich diese „Elektronen-Magnete“ zufällig in alle Richtungen ausrichten, führen dazu, dass sie sich am Ende gegenseitig auslöschen.

Wenn sich Atome spüren

Dass sich im Experiment der Würzburger Physiker dennoch magnetische Eigenschaften zeigten, hat einen besonderen Grund: „Durch die raffinierte Anordnung einzeln aufgebrachter Metallatome entstehen regelmäßig geordneter Muster der Elektronenspins“, erklärt Jörg Schäfer. Nach der Anbindung an die Siliziumunterlage besaß jedes Atom nur noch ein Elektron mit seinem Spin im äußersten Orbital – ein sogenanntes Valenzelektron. Es ist dasjenige, das eine Verbindung zum Nachbaratom aufnehmen konnte, was man sich bildlich durch das Hin- und Herhüpfen der Elektronen vorstellen kann. Erst dadurch wird es möglich, dass sich die Elektronenspins auf den verschiedenen Plätzen gegenseitig spüren und zueinander einstellen.

Allerdings gab es für die Physiker ein weiteres Rätsel zu lösen: Wie sie in ihren Untersuchungen feststellen konnten, ordneten sich die Metallatome auf dem Siliziumträger in absolut gleichmäßigen Abstände an und bildeten dabei ein sogenanntes „Dreiecksgitter“.

Das Problem der Frustration

Das Problem: „In der Natur wird häufig eine Spinanordnung bevorzugt, bei der die Spins der Nachbarplätze in entgegengesetzte Richtungen zeigen“, sagt Jörg Schäfer. Wie soll das aber in einem Dreieck funktionieren, wonach soll sich dort der Spin des dritten Partners orientieren? Ein scheinbar unlösbares Problem, das in der Physik deshalb als das „Problem der Frustration“ bekannt ist. Die Lösung hat sich nach aufwendiger Untersuchung gezeigt: „Die Spins der Zinn-Atome haben sich auf dem Siliziumträger in einem ungewöhnlichen Muster mit reihenweise alternierender Ausrichtung angeordnet“, so Schäfer (siehe Abbildung).

Diese Entdeckung magnetischer Ordnung illustriere ganz grundlegend die verblüffenden Möglichkeiten zur Steuerung elektronischer Wechselwirkungen auf atomarer Skala, erklärt Schäfer. Damit liefere die Arbeit einen Ansatz, wie auf der Basis bisher gut etablierter Halbleitermaterialien wie Silizium eine spinbasierte Informationsverarbeitung möglich werden könnte, bei der Daten magnetisch kodiert werden.

Enge Zusammenarbeit von Theorie und Experiment

Das Experiment der Würzburger Forscher ist im Rahmen der DFG-Forschergruppe FOR 1162 „Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tunable Interactions“ gelaufen. Dabei haben theoretische und Experimentalphysiker eng zusammengearbeitet: Am Lehrstuhl für Theoretische Physik I wurden das Atomgitter und die Hüpfprozesse der Elektronen am Computer aufwendig simuliert. Die Experimente wurden am Lehrstuhl für Experimentelle Physik IV durchgeführt.

Ihre Erkenntnisse über die Anordnung der Spins haben die Physiker mit Hilfe der Photoelektronenspektroskopie gewonnen. Dabei werden Elektronen durch den Beschuss mit Röntgenstrahlung aus der Oberfläche der Materialprobe herausgelöst und auf ihre Eigenschaften untersucht. „Aus deren Energie- und Winkelverteilung erhält man die notwendige Information über die magnetische Ordnung“, sagt Schäfer. Parallel wurde ihr Verhalten in sogenannten Vielteilchen-Rechnungen modelliert, in die direkt das Spinmuster mit einfloss.

Übereinstimmung bei den Elektronensignalen

Die Ergebnisse beider Varianten waren für die Wissenschaftler überraschend: Beide Methoden zeigten übereinstimmende Muster in der Signalintensität, die von einer periodischen Anordnung der Spins herrührte. Ein „erstaunliches Ergebnis“, findet Schäfer – vor allem, da in dem Experiment ja nur nichtmagnetische Komponenten verwendet wurden.

“Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface”. Gang Li, Philipp Höpfner, Jörg Schäfer, Sebastian Meyer, Aaron Bostwick, Eli Rotenberg, Ralph Claessen, Werner Hanke. Nature Communications, DOI: 10.1038/ncomms2617

Kontakt

Prof. Dr. Werner Hanke, T: (0931) 31-85714, hanke@physik.uni-wuerzburg.de
Prof. Dr. Ralph Claessen, T: (0931) 31-85732, claessen@physik.uni-wuerzburg.de
PD Dr. Jörg Schäfer, T: (0931) 31-83483, joerg.schaefer@physik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik