Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plasma-Experiment feiert Jubiläum an Bord der ISS

27.01.2010
Am 27. Januar 2010 beginnt zum 25. Mal eine Serie von Experimenten zu Komplexen Plasmen an Bord der internationalen Raumstation ISS. Physiker am Max-Planck-Institut für extraterrestrische Physik in Garching untersuchen damit grundlegende Prozesse, die ein besseres Verständnis der Vorgänge in Flüssigkeiten und Festkörpern erlauben.

Drei Aggregatszustände der Materie sind jedem bekannt: fest, flüssig oder gasförmig. In unserem Universum dominiert mit 99 Prozent aber ein vierter Zustand: das Plasma. Dieser bildet sich, wenn Gas so stark erhitzt wird, dass sich seine Moleküle in Ionen und freie Elektronen aufspalten.


Abbildung 1: Kosmonaut Oleg Kotov mit dem PK-3 Plus-Labor in MIM-2, dem neuen russischen Docking- und Forschungsmodul, nach dem Aufbau der Experimentapparatur (vorne, in schwarzer Tonne) und des Kontroll-Computers (hinter dem Kosmonauten). (Bild: mit freundlicher Genehmigung von RKK-Energia).


Abbildung 2: Phasentrennung (Tropfenbildung) in einem binären Komplexen Plasma auf der ISS.

Man könnte deshalb denken, dass ein Plasma besonders ungeordnet ist. Forscher am Max-Planck-Institut für extraterrestrische Physik (MPE) haben aber herausgefunden, dass sogenannte „Komplexe“ Plasmen unter besonderen Bedingungen flüssig werden können oder sogar kristallisieren. In diesem Zustand ermöglichen sie ganz neue Einblicke in die Physik von Flüssigkeiten oder Festkörpern. Die Plasmaphysiker können so beispielsweise das Schmelzen und Erstarren (die Kristallisation), die Gitter-Defektbewegung in Kristallen, oder Flüssigkeitseffekte auf der Basis einzelner Atome beobachten.

Komplexe Plasmen bestehen aus winzigen Teilchen (etwa ein Tausendstel Millimeter groß), die sich in einem Plasma befinden und hoch negativ aufgeladen werden. Durch die starke Wechselwirkung zwischen den Teilchen können sich diese in regulären Strukturen, sowohl flüssig als auch fest, anordnen. Da das Schwerefeld der Erde auf diese Vorgänge störend wirkt, werden die Experimente dazu im Weltall durchgeführt.

Die Erforschung Komplexer Plasmen mit dem Labor PKE-Nefedov war 2001das erste naturwissenschaftliche Projekt auf der Internationalen Raumstation ISS und in der Anfangsphase auch das erfolgreichste. Mittlerweile ist das Nachfolgelabor PK-3 Plus bereits seit vier Jahren in Betrieb und liefert wie schon sein Vorgänger einzigartige Ergebnisse. Die jetzt vom 27. bis 29. Januar durchgeführte Serie von neuen Experimenten ist die 25. Mission zur komplexen Plasmaforschung unter Schwerelosigkeit. Mit diesem Experiment wird PK-3 Plus außerdem permanent im neuen ISS-Modul MIM-2 installiert und als dessen erstes wissenschaftliches Experiment betrieben.

Eines der Experimente im PK-3 Plus-Labor beschäftigt sich mit „binären“ Komplexen Plasmen: Bringt man zwei Teilchenarten unterschiedlicher Größe in ein homogenes Hintergrundplasma ein, so sollte man erwarten, dass sich durch die abstoßenden Kräfte beide gut durchmischen. In den bisher auf der ISS unter Schwerelosigkeit durchgeführten Experimenten zeigen die Teilchenwolken allerdings eine klare Phasentrennung der beiden Teilchenarten (siehe Abb. 2).

„Dieses Phänomen ist aus den unterschiedlichsten Systemen, wie beispielsweise molekularen Flüssigkeiten oder kolloidalen Suspensionen gut bekannt und wird seit langem untersucht“, sagt Hubertus Thomas, Wissenschaftler am MPE und Koordinator des PK-3 Plus Experiments. „In komplexen Plasmen kann dies aber erstmalig durch die Bewegung einzelner Partikel untersucht werden, und wir erhoffen uns mit den jetzt gestarteten Experimenten neue Einblicke in die Physik der Phasentrennung.“

Die Erforschung komplexer Plasmen ist somit eine interdisziplinäre, auf grundlegende physikalische Fragestellungen ausgerichtete Forschung. Wie so oft stellt diese allerdings wichtige Weichen für die angewandte Forschung: Die Erkenntnisse und Erfahrungen der Plasma-Experimente im Labor und auf der ISS führten zu einem ganz neuen Zweig in der Medizin, der sogenannten Plasmamedizin. Hier wird derzeit in einer klinischen Studie untersucht, wie Plasmen zur kontaktfreien Sterilisierung von Wunden, zur Desinfizierung von Händen im Klinikbereich oder zur Behandlung von Parodontose eingesetzt werden können.

Danksagung

Die jahrelange, kontinuierliche Forschung an Bord der ISS ist nur möglich durch die bilateralen Übereinkünfte mit Russland. Das MPE-Partnerinstitut in Moskau, das „Joint Institute for High Temperatures“ der Russischen Akademie der Wissenschaften, ist maßgeblich an diesem Erfolg beteiligt, indem es die notwendigen Ressourcen und Logistik von russischer Seite zur Durchführung der komplexen Plasmaforschung auf der ISS sicherstellt. Der deutsche Beitrag, gefördert von der Raumfahrt-Agentur des Deutschen Zentrums für Luft und Raumfahrt e. V. mit Mitteln des Bundesministeriums für Wirtschaft und Technologie, bestand im Bau und Test eines weltraumtauglichen Labors für die Plasmakristall (PK)-Forschung.

Plasmamedizin-Forschungsgruppe am MPE:
http://www.mpe.mpg.de/theory/plasma-med/index.html
Dr. Hubertus Thomas
Max-Planck-Institut für extraterrestrische Physik Tel.: +49 89 30000-3838
E-Mail: thomas@mpe.mpg.de
Dr. Hannelore Hämmerle
Pressesprecherin
Max-Planck-Institut für extraterrestrische Physik
Tel.: +49 89 30000-3980
E-Mail: hanneh@mpe.mpg.de

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpe.mpg.de/Highlights/PR20100127/text-d.html
http://jiht.ru/
http://suzymchale.com/ruspace/mim2.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie