Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Planck findet ein fast perfektes Universum

21.03.2013
Der Satellit liefert ein detailliertes Bild der kosmischen Hintergrundstrahlung und stützt das Standardmodell, findet aber auch Abweichungen

Die erste vollständige Himmelskarte der Mikrowellenhintergrundstrahlung bestätigt das Standardmodell der Kosmologie eindrucksvoll und legt dessen Parameter nun sehr genau fest. Gleichzeitig finden die Wissenschaftler der Planck-Kollaboration aber auch signifikante Anomalien. Diese deuten möglicherweise darauf hin, dass einige Aspekte des Standardmodells noch nicht verstanden sind. Wissenschaftliche Artikel zu den neuen Ergebnissen erscheinen am 22. März 2013.


Babybild des Weltalls: Die Unregelmäßigkeiten der kosmischen Mikrowellenhintergrundstrahlung (CMB), wie sie mit Planck beobachtet wurden. Der CMB ist eine Momentaufnahme vom ältesten Licht im Universum, das ausgesandt wurde, als das All erst 380000 Jahre alt war. Das Bild zeigt winzige Temperaturschwankungen in Regionen mit leicht unterschiedlicher Dichte, aus denen alle Strukturen hervorgegangen sind: die Sterne und Galaxien von heute. © ESA und Planck Collaboration


Spektrum des Kosmos: Diese Grafik zeigt Temperaturschwankungen in der kosmischen Mikrowellenhintergrundstrahlung, die Planck bei verschiedenen Winkelskalen am Himmel gemessen hat. Diese Kurve wird als Leistungsspektrum bezeichnet. Die größten Winkelskalen, beginnend mit einem Winkel von 90 Grad, sind auf der linken Seite des Diagramms gezeigt, kleinere Skalen rechts. (Als Vergleich: der Durchmesser des Vollmonds am Himmel beträgt etwa ein halbes Grad.) Die roten Punkte zeigen die Planckmessungen; die Fehlerbalken beinhalten sowohl Messfehler als auch eine Abschätzung der Unsicherheit aufgrund der begrenzten Anzahl von Messpunkten am Himmel. Diese sogenannte kosmische Varianz ist ein unvermeidbarer Effekt, der bei größeren Winkelskalen zunimmt. Die grüne Kurve ist die beste Anpassung des Standardmodells der Kosmologie an die Planckdaten; dieses Szenario für den Ursprung und die Evolution des Universums wird derzeit von den meisten Forschern akzeptiert. Der hellgrüne Bereich um die Kurve zeigt Vorhersagen von allen Varianten des Standardmodells, die mit den Daten am besten übereinstimmen. © ESA und Planck Collaboration

Die Daten für die nun veröffentlichte Himmelskarte wurden während der ersten fünfzehneinhalb Monate der Planck-Mission gewonnen. Das Weltraumteleskop der europäischen Raumfahrtagentur ESA zeigt das älteste Licht im Universum. Dieses ging auf die Reise, als das All erst 380000 Jahre alt war und nach dem Urknall zum ersten Mal durchsichtig wurde.

Damals kühlte die heiße Ursuppe aus Protonen, Elektronen und Photonen langsam ab. Neutrale Wasserstoffatome bildeten sich. Das Licht hatte freie Bahn und erlaubt es uns heute, ein Bild des Babyuniversums zu machen. Als sich der Kosmos weiter ausdehnte und abkühlte, wurde diese Strahlung zu längeren Wellenlängen hin verschoben, sodass wir sie heute als kosmischen Mikrowellenhintergrund (CMB von englisch Cosmic Microwave Background) bei einer Temperatur von etwa 2,7 Kelvin, entsprechend minus 270 Grad Celsius, empfangen.

Winzige Temperaturschwankungen in dieser CMB-Karte spiegeln kleinste Dichtefluktuationen im frühen Universum wider. „Die Planck-Karte des CMB liefert uns ein extrem detailliertes Bild des ganz frühen Universums“, sagt Simon White, Co-Investigator in der Planck-Kollaboration und Direktor am Garchinger Max-Planck-Institut für Astrophysik.

White untersucht, wie sich kosmische Strukturen entwickeln und war maßgeblich daran beteiligt, das Standardmodell der Kosmologie in den 1980er-Jahren zu etablieren. „Alle Strukturen, die wir heute sehen, entstanden aus winzigen Dichtefluktuationen kurz nach dem Urknall“, so Simon White. Der Planck-Satellit wurde gebaut, um diese Fluktuationen über den gesamten Himmel mit bisher unerreichter Auflösung und Empfindlichkeit zu vermessen – mit dem Ziel, Zusammensetzung und Entwicklung des Universums vom Beginn bis heute zu bestimmen.

„Die Daten von Planck passen extrem gut zum Standardmodell der Kosmologie“, bestätigt Torsten Enßlin, der die am Max-Planck-Institut für Astrophysik angesiedelte deutsche Beteiligung an der Mission leitet. „Die kosmologischen Parameter konnten mit Planck jetzt so genau bestimmt werden wie nie zuvor. Und unsere Analyse bestand mit Bravour alle Tests gegenüber diversen anderen astronomischen Beobachtungen.“

So zeigen die Planckdaten, dass die normale Materie, aus der Galaxien, Sterne und auch unsere Erde bestehen, nur mit rund 4,9 Prozent zur Massen- und Energiedichte des Universums beiträgt. Dazu kommen etwa 26,8 Prozent Dunkle Materie, die sich lediglich über ihre Schwerkraftwirkung bemerkbar macht; deutlich mehr, als bisher für diesen mysteriösen Stoff angenommen. Andererseits ist der Anteil der Dunklen Energie – der rätselhaften Komponente, die dafür sorgt, dass sich das Universum beschleunigt ausdehnt – mit 68,3 Prozent geringer als gedacht.
Auch die Geschwindigkeit, mit der unser Universum heute expandiert, die sogenannte Hubble-Konstante, hat Planck neu bestimmt: mit 67,15 km/s/Mpc ist ihr Wert signifikant kleiner als der derzeitige Standardwert (etwa 72 km/s/Mpc). Daraus ergibt sich dann auch ein etwas höheres Weltalter von 13,82 Milliarden Jahren (bisher: 13,7 Milliarden Jahre).

Allerdings gibt es aufgrund der extrem hohen Qualität der Planckdaten auch einige Ungereimtheiten, die sich nur schwer mit dem Standardmodell in Einklang bringen lassen. So sind die CMB-Fluktuationen auf großen Skalen geringer, als man das von den auf kleineren Skalen gemessenen Strukturen erwarten würde. Außerdem scheint eine Himmelsphäre etwas stärkere Strukturen aufzuweisen als die andere. Dazu passt vielleicht ein weiteres auffälliges Element: ein kalter Fleck, der sich über eine viel größere Region erstreckt, als man annehmen dürfte.

Diese Daten könnten somit eine Erweiterung des Standardmodells oder sogar eine neue Theorie nötig machen. „Auch wenn wir diese Anomalien heute noch nicht verstehen, so können wir doch ausschließen, dass es sich um einen Vordergrundeffekt handelt“, sagt Torsten Enßlin. „Insbesondere der cold spot ist schon länger bekannt; hierbei könnte es sich aber auch um eine statistische Fluktuation handeln.“

Die Wissenschaftler am Max-Planck-Institut für Astrophysik sind bereits seit Beginn der Mission an der Software-Entwicklung für die Datenreduktion beteiligt, um die Vordergrundstrahlung von Objekten wie Galaxienhaufen, Quasaren und auch unserer eigenen Milchstraße zu entfernen. Inzwischen konzentriert sich die Arbeit aber darauf, die Informationen aus der kosmischen Mikrowellenhintergrundstrahlung zu analysieren und dadurch unser Universum besser zu verstehen.

Ein Aspekt, der dabei unter anderem untersucht wurde, ist die Entdeckung und Vermessung von Galaxienhaufen durch den Sunyaev-Zeld'ovich-Effekt. Dieser SZ-Effekt ist eine charakteristische Signatur von Galaxienhaufen im kosmischen Mikrowellenhintergrund. Sie entsteht, wenn das Licht des CMB auf seinem Weg zu uns einen Galaxienhaufen passiert. Durch die verschiedenen Frequenzbänder von Planck lässt sich der SZ-Effekt sehr gut darstellen.

Rashid Sunyaev, heute Direktor am Max-Planck-Institut für Astrophysik und Co-Investigator in der Planck-Kollaboration, sagte gemeinsam mit Yakov Zel'dovich nicht nur den Effekt der Galaxienhaufen auf den CMB vorher, sondern auch die akustischen Fluktuationen im CMB selbst, die Planck jetzt so detailliert vermessen hat.

Die Planck-Ergebnisse sind für Sunyaev sehr aufregend: „Als wir vor mehr als 40 Jahren unsere Modelle für den CMB entwickelt haben, war das für uns eher ein rein theoretisches Gedankenexperiment. Wir hätten uns nie träumen lassen, dass die Messungen tatsächlich irgendwann so genau werden, dass sie nun sogar zur Entdeckung von Hunderten bisher unbekannter Galaxienhaufen eingesetzt werden können. Ein großartiger Erfolg für Planck.“

Die Planck-Wissenschaftler nutzen diese Galaxienhaufen sogar dazu, um die wichtigsten Parameter des Universums zu bestimmen – ein Methode, die so zum ersten Mal auf Daten des CMB angewendet wurde. Das Verfahren ist vollkommen unabhängig von der Bestimmung der kosmologischen Parameter anhand der Form und der Höhe der akustischen Fluktuationen.

Ansprechpartner

Dr. Torsten Enßlin,
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-2243
E-Mail: ensslin@­mpa-garching.mpg.de
Dr. Hannelore Hämmerle,
Pressesprecherin
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-3980
E-Mail: pr@­mpa-garching.mpg.de

Dr. Torsten Enßlin | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7042307/kartierung_planck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie