Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pirouetten im Chaos der Turbulenz

07.06.2011
Erkenntnisse, wie Wirbel sich in einer turbulenten Strömung verhalten, könnten die Simulation von Wolken in Klimamodellen erleichtern

Das schnelle Vermischen von Kaffee und Milch nach dem Umrühren oder die Bildung von Regentropfen in Wolken: das sind nur zwei von vielen Phänomenen, in denen Turbulenzen eine tragende Rolle spielen. Nun haben Forscher des Max-Planck-Instituts für Dynamik und Selbstorganisation in Göttingen und der Ecole Normale Superieure de Lyon gefunden, dass die chaotisch erscheinenden Turbulenzen erstaunlich viel Ordnung enthalten.


Turbulenzen im Blick: Mit mehreren Kameras verfolgen Physiker des Max-Planck-Instituts für Dynamik und Selbstorganisation Teilchen, die in einer turbulenten Wasserströmung verwirbelt und von einem intensiven Laser angestrahlt werden. An den Bahnen von vier Partikeln erkannten sie, dass ein Wirbel sich wie ein Pirouetten drehender Eisläufer zusammenzieht und dabei schneller wird. © Eberhard Bodenschatz / MPI für Dynamik und Selbstorganisation

Eine wesentliche Zutat von Turbulenzen sind demnach Wirbel, die sich ähnlich verhalten wie ein Eisläufer bei einer Pirouette, wenn er die Arme anwinkelt und dadurch seine Rotationsgeschwindigkeit erhöht. Diesen Pirouetten-Effekt beobachteten die Forscher an verschieden großen Wirbeln einer turbulenten Flüssigkeit. Sie lösten damit ein Rätsel auf, das Turbulenzforscher seit Jahrzehnten beschäftigt. Nämlich die Frage, wie Energie von großen zu immer kleineren Wirbeln fließt und sich schließlich in den kleinsten Wirbeln in Wärme umwandelt.

Schon in der ersten Hälfte des letzten Jahrhunderts fragten sich Physiker, wie Turbulenzen die Energie einer gerichteten Strömung in ungerichtete Wärmeenergie umwandeln. Sie erklärten es bildlich mit der so genannten „Energiekaskade“: Demnach strömt die Bewegungsenergie, etwa die eines Flusses, während er einen Wasserfall hinunterstürzt, zunächst in große Wirbel, die sich schnell drehen. Die großen Wirbel zerfallen in kleinere, diese wiederum in immer noch kleinere. Dabei verlangsamen sich die Drehgeschwindigkeiten der Wirbel, je kleiner diese werden. Bei den langsam drehenden Miniwirbeln schließlich wirkt sich die Reibung so stark aus, dass die Bewegungsenergie in Wärme umgewandelt wird.

Die Energiekaskade nutzen Menschen im Alltag, etwa für Mischungsvorgänge: beim Verrühren von Milch im Kaffee wandelt sich die zunächst durch den Löffel angeregte Strömung der Milch binnen Sekunden zu einer richtungslosen, gleichmäßigen Verteilung der winziger Milchtröpfchen. Auch die Ausgangsstoffe von chemischen Reaktionen werden mithilfe von Turbulenz vermischt, so dass diese wesentlich schneller ablaufen, als ohne eine Vermischung der Stoffe.

Die Turbulenz aus Sicht eines mitschwimmenden Teilchens
Verstanden haben Forscher die Mechanismen in der Turbulenz jedoch noch nicht. Ein solches Verständnis könnte die Modellierung turbulenter Vorgänge im Computer deutlich erleichtern und dadurch etwa die Simulation von Wolken in Klimamodellen verbessern. Die Physiker Eberhard Bodenschatz und Haitao Xu vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Alain Pumir von der Ecole Normale Superieure de Lyon haben nun einen wichtigen Schritt hin zum Verständnis der Turbulenzen getan. Sie entdeckten eine wesentliche Zutat von turbulenten Strömungen, indem sie erstmals die Perspektive eines in der turbulenten Strömung mitschwimmenden Teilchens einnahmen.

Dazu beobachteten sie in einer turbulenten Wasserströmung mit einer Hochgeschwindigkeitskamera Polystyrolteilchen, die von einem sehr hellen Laser beleuchtet wurden. Bei der Analyse der Bilder griffen sie sich ein Teilchen heraus, das von drei weiteren je gleich weit entfernten Partikeln umgeben war, sodass sie zusammen einen Tetraeder bildeten. Sie verfolgten, wie sich die Lagen der Teilchen zueinander mit der Zeit veränderten, wie der Tetraeder also in der wirbelnden Flüssigkeit seine Form wandelt und wie er rotiert. Es handelte sich dabei um extreme Zeitrafferaufnahmen von 30 000 Bildern pro Sekunde.

Das Ergebnis erstaunte die Physiker: Die Teilchen vollführten gewissermaßen einen Tanz wie ein Eisläufer, der eine Pirouette ausführt. Wenn er während der Drehung um die eigene Achse die Arme anwinkelt, erhöht sich seine Drehgeschwindigkeit drastisch. Grund dafür ist die Erhaltung des so genannten Drehimpulses, einer physikalischen Größe, die umgangsprachlich als Drall bezeichnet wird. Weil eine weiter von der Drehachse entfernt liegende Masse einer Drehung mehr Widerstand entgegensetzt als innen liegende, erhöht sich das Tempo der Drehung, wenn Masse von außen nach innen verlagert wird.

Die Simulation von Turbulenzen wird jetzt leichter

Einen entsprechenden Effekt beobachteten Bodenschatz und sein Team im turbulenten Wasser. Die Strömung streckte den Tetraeder, er wurde schlanker. Zusätzlich richtete sich die Drehachse des Tetraeders parallel zur ursprünglichen Streckrichtung der Strömung aus. Im Endeffekt erhöhte sich die Drehgeschwindigkeit des gestreckten Tetraeders. „Dabei bleibt der Drehimpuls erhalten“, sagt Bodenschatz. Somit entspricht die beobachtete Dynamik der eines Pirouetten drehenden Eiskunstläufers. Bodenschatz und seine Kollegen sprechen daher vom „Pirouetten-Effekt“.

Dass der Drehimpuls des Wirbels mitten in einer turbulenten Flüssigkeit erhalten bleibt, überraschte die Physiker. „Wir verstehen noch nicht, warum das so ist“, sagt Bodenschatz. Eigentlich sollten die Wirbel im Chaos einer turbulenten Strömung Drehmomente erfahren, die ihren Drehimpuls ändern. Der Pirouetten-Effekt zeige, dass innerhalb des Durcheinanders der Turbulenz „eine ziemlich große Ordnung“ herrsche, sagt der Physiker.

Diese Ordnung im Durcheinander zeigt sich auf mehreren Größenskalen. Die Göttinger Physiker untersuchten mit der geschilderten Methode Wirbel von einigen Millimetern bis zu mehreren Zentimetern Durchmesser. „Alle zeigten den Pirouetten-Effekt“, sagt Bodenschatz. „Unser Ergebnis spricht für das Modell der Energiekaskade“, sagt der Physiker. Seit den Dreißigerjahren des letzten Jahrhunderts vermuten Forscher, dass die Wirbeldynamik die Energiekaskade stark beeinflusst. Demnach verlängern sich die Wirbel in der Strömung, drehen sich schneller um ihre Längsachse, werden dadurch instabil und zerfallen schließlich in kleinere Wirbel, die das gleiche wieder durchmachen, bis die Kaskade bei ganz kleinen Wirbeln ankommt.

In den letzten rund 30 Jahren schien diese Vorstellung aber durch Berechnungen widerlegt, nach denen die Drehachse sich zu keinem Zeitpunkt entlang der stärksten Streckrichtung der Strömung ausrichtet, sondern senkrecht dazu verharrt. „Diese Rechnungen betrachteten aber immer nur Momentaufnahmen des Strömungsfelds“, sagt Bodenschatz. Sie stellen also sozusagen Blitzlichtaufnahmen dar. „Wir hingegen haben erstmals Wirbel beobachtet wie sie mit der Flüssigkeit mitschwimmen“, so der Physiker. Nur so könne die zeitliche Entwicklung eines Wirbels mitverfolgt werden. Aus der Perspektive eines im Strom schwimmenden Teilchens wurde der früher nur vermutete Pirouetten-Effekt nun bestätigt.

Bodenschatz sieht in dem Ergebnis einen Schritt hin zur Lösung eines wichtigen Problems bei der Simulation von Turbulenz im Rechner. „Man kann schon viele Aspekte von Turbulenz simulieren, aber noch nicht, wie die verschiedenen Größenskalen miteinander wechselwirken.“ Dies könne sich durch ein besseres Verständnis der Dynamik von Wirbeln unterschiedlicher Größe ändern.

Ansprechpartner
Prof. Dr. Eberhard Bodenschatz
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-300
Fax: +49 551 5176-302
E-Mail: eberhard.bodenschatz@ds.mpg.de
Originalveröffentlichung
Haitao Xu, Alain Pumir und Eberhard Bodenschatz
The pirouette effect in turbulent flows
Nature Physics, 5. Juni 2011; DOI: 10.1038/NPHYS2010

Prof. Dr. Eberhard Bodenschatz | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4336819

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften