Physikern genügt eine billionstel Sekunde zur Kontrolle blitzschneller Quantenbits

Die grafische Darstellung zeigt, wie ein Laserpuls das Farbzentrum im atomaren Gitter des Diamants, ein Silizium-Atom (gelb) und zwei Fehlstellen (grau), trifft. Grafik: AG Becher

Quantencomputer versprechen Lösungen für Rechenprobleme, die heutige, konventionelle Großrechner noch in die Knie zwingen oder ihnen zumindest extrem lange Rechenzeiten abverlangen. Ein Quantencomputer kann bestimmte mathematische Probleme erheblich effizienter lösen als heutige Rechner und so z.B. für Simulationen im Bereich der Wirkstoffentwicklung oder Materialforschung von unschätzbarem Wert sein.

Dahinter steckt die Informationsverarbeitung mit Qubits Nehmen die Bits in heutigen Rechnern die Zustände 0 oder 1 ein, können Quantenbits beide Zustände gleichzeitig, einen so genannten Überlagerungszustand, einnehmen. Auf diese Weise können Rechenoperationen in Quantencomputern um ein Vielfaches schneller ablaufen – theoretisch.

Denn noch ist die Kontrolle solcher Quantenbits extrem schwierig. Das liegt unter anderem an der sehr kurzen Zeitspanne, in denen ein Quantenbit zwei Zustände gleichzeitig innehat. Diese so genannte Kohärenzzeit beträgt bei den Quantenbits, die Saarbrücker Physiker erforschen, gerade einmal 45 Nanosekunden, das sind 45 milliardstel Sekunden. Dennoch ist es den Saarbrücker Forschern nun gelungen, ein Quantenbit auch in dieser extrem kurzen Zeitspanne vollständig zu kontrollieren.

Dazu nutzte Doktorand Jonas Becker aus Christoph Bechers Team spezielle Laser, mit denen er gezielt beliebige Überlagerungszustände in einem sogenannten Silizium-Fehlstellen-Farbzentrum (SiV), das als Quantenbit fungiert, erzeugen konnte. „Aufgrund dessen spezieller elektronischer Struktur konnten wir ultrakurze Laserpulse von nur knapp einer Pikosekunde, das ist eine billionstel Sekunde, zur Kontrolle zu nutzen. Dies erlaubt Quanteninformationsverarbeitung mit extrem hoher Geschwindigkeit und ermöglicht es, tausende von Rechenoperationen innerhalb der Kohärenzzeit des SiV durchzuführen“, erklärt Becker.

Das Silizium-Fehlstellen-Farbzentrum ist ein gewollt eingebauter „Fehler“ in der atomaren Gitterstruktur eines ansonsten hochreinen künstlichen Diamanten, der aus reinem Kohlenstoff besteht. Statt des gewohnten Kohlenstoffatoms befindet sich an einer Stelle des Gitters ein Silizium-Atom. Im Gegensatz zum Diamant selbst wechselwirken solche Defekte oftmals sehr stark mit Licht. Daher ist es möglich, den internen Quantenzustand dieser Zentren mithilfe von Lasern gezielt zu verändern und auf diese Weise Information zu speichern.

„Das Silizium-Fehlstellen-Farbzentrum in Diamant ist ein sehr vielversprechender Kandidat für Anwendungen der Quantentechnologien“ erklärt Jonas Becker. „Wir können viele solcher Zentren auf kleinstem Raum durch Beschuss eines hochreinen Diamanten mit einem Teilchenbeschleuniger erzeugen. Die sehr guten optischen Eigenschaften des Zentrums erlauben zudem eine effiziente optische Vernetzung der Defekte und die Kontrolle einzelner SiVs in Systemen mit mehreren Quantenbits, da wir die Laser mit hoher räumlicher Auflösung auf einzelne Zentren fokussieren können“, so Becker weiter.

In zukünftigen Arbeiten können die hier entwickelten Kontrolltechniken genutzt werden, um konkrete Bausteine für Quantenkommunikations-Anwendungen zu realisieren, wie etwa Systeme zum Speichern von Quanteninformation sowie Schnittstellen zwischen Quantenbits und Licht.

Hintergrund Quantentechnologie:
Zugrundeliegendes Prinzip der Quantentechnologie ist, dass ein Teilchen (z.B. ein Atom, Elektron, Lichtteilchen) zwei Zustände gleichzeitig einnehmen kann. Diese Zustände nennt man auch Überlagerungszustände. Auf die Computertechnologie übertragen bedeutet das, dass die Bits, aus denen eine Information auf einem normalen Computer besteht, die Zustände 1 oder 0 haben können, auf einem Quantencomputer hingegen die Zustände 1 und 0 gleichzeitig, in jeder beliebigen Kombination. Solche Quantenbits oder Qubits sind die Grundlage eines Quantencomputers. Rechnen kann man beispielsweise mithilfe von Atomen als Speichereinheit, indem man sie mit Laserlicht anregt und ihren Quantenzustand gezielt manipuliert. Eine Rechenoperation kann nun auf beiden Anteilen des Überlagerungszustandes (1 und 0) gleichzeitig oder parallel stattfinden. Ein Quantencomputer kann zum Beispiel in derselben Zeit, in der ein herkömmlicher 32-Bit-Rechner einen seiner 2 hoch 32 möglichen Zustände verarbeitet, parallel alle diese Zustände verarbeiten. Der Quantencomputer rechnet also um ein Vielfaches schneller als ein normaler Computer. Neben geeigneter Hardware setzt die Quanteninformationsverarbeitung zusätzlich auch die Entwicklung von neuen Rechenvorschriften (Algorithmen) voraus, um die Vorteile der Quantenrechner vollständig ausreizen zu können.

Zur AG Christoph Becher:
Am Lehrstuhl des Professors für Quantenoptik entwickeln die Physiker Technologien für die Quantenkommunikation, beispielsweise neuartige Lichtquellen mit künstlichen Atomen in Diamant, Schnittstellen zwischen Quantenbits in Diamant und Licht sowie Frequenzwandler, die Lichtteilchen in einen anderen Wellenlängenbereich umsetzen können. Die AG Becher ist einer von sechs Lehrstühlen und Forschergruppen, die den Schwerpunkt Quantentechnologien der Universität des Saarlandes bilden.

Die Studie „Ultrafast all-optical coherent control of single silicon vacancy colour centres
in diamond“ ist am 14. November in der Fachzeitschrift Nature Communications erschienen: DOI:10.1038/ncomms13512.

Weitere Informationen:
Prof. Dr. Christoph Becher
Tel.: (0681) 302 2466
E-Mail: christoph.becher@physik.uni-saarland.de

Jonas Becker, M.Sc.
Tel.: (0681) 302 3216
E-mail: j.becker@physik.uni-saarland.de

http://www.nature.com/articles/ncomms13512

Media Contact

Thorsten Mohr Universität des Saarlandes

Weitere Informationen:

http://www.uni-saarland.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer