Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker der Universität Mainz entwickeln multifunktionalen Lichtspeicher

29.07.2009
Einteiliger Mikroresonator ermöglicht kontrollierte Kopplung von Licht und Materie / Veröffentlichung in Physical Review Letters

Licht ist nicht greifbar und bewegt sich zudem mit großer Geschwindigkeit. Es lässt sich jedoch auf kleinstem Raum einfangen, indem man die Wände eines mikroskopischen Containers, in den das Licht kontrolliert einfällt, verspiegelt.

Durch fortwährende Reflexion wird das Licht gewissermaßen eingesperrt und kann nicht entweichen. Einen so verspiegelten Mikro-Hohlraum nennen die Experten Mikroresonator. Verwendung finden Mikroresonatoren überall dort, wo die Wechselwirkung von Licht und Materie besonders verstärkt und kontrolliert untersucht werden soll. Ein wichtiges technisches Einsatzgebiet ist beispielsweise die Laserdiode, die die Telekommunikation und die optische Datenspeicherung in den letzten Jahrzehnten revolutioniert hat.

Aufgrund der hohen Lichtgeschwindigkeit - in einer Sekunde umrundet Licht die Erde mehr als sieben Mal - beträgt die Zahl der Reflexionen in Mikroresonatoren pro Sekunde bis zu einige Billionen. Soll unter diesen Bedingungen das Licht auch nur eine Millionstel Sekunde gespeichert bleiben, so darf bei jeder einzelnen der eine Million Reflexionen, die in dieser Zeit erfolgen, nur etwa ein Millionstel der Lichtleistung verloren gehen. Ein gewöhnlicher metallisierter Spiegel verliert pro Reflexion einige Prozent Lichtleistung und wäre damit mehr als zehntausend Mal zu schlecht.

Eine weitere Eigenschaft von Mikroresonatoren erklärt sich am besten im Vergleich mit einer Instrumentensaite: Ähnlich wie eine Saite abhängig von ihrer Länge nur bei bestimmten Frequenzen schwingt, kann ein Mikroresonator abhängig von seinen Abmessungen nur Licht bestimmter Frequenzen beziehungsweise Farben speichern. Soll das gespeicherte Licht aber zum Beispiel wie in einem Laser mit Atomen gekoppelt werden, so muss man seine Frequenz genau auf die jeweilige Atomsorte abstimmen. Aus der fehlenden Möglichkeit zur Abstimmung des Mikroresonators ergibt sich für viele wichtige Anwendungen ein Problem.

An der Johannes Gutenberg-Universität Mainz ist es nun einem Team von Physikern um Professor Dr. Arno Rauschenbeutel erstmals gelungen, einen nur aus einem Bauteil bestehenden Mikroresonator zu realisieren, der alle gewünschten Eigenschaften in sich vereint: lange Speicherzeit, kleines Volumen, und Abstimmbarkeit auf beliebige Lichtfrequenzen. Wie das Forscherteam in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters berichtet, genügt es hierfür, eine herkömmliche Glasfaser durch Erhitzen und Strecken auf etwa den halben Durchmesser eines menschlichen Haares zu verjüngen und auf dieser dann mit Hilfe eines Lasers eine bauchige Struktur zu erzeugen. In dieser Struktur wird das Licht kontinuierlich an der Oberfläche der Glasfaser reflektiert und umläuft so auf einer Schraubenbahn die Achse der Glasfaser. Dabei kann das Licht auch entlang der Glasfaser nicht entweichen, weil der Durchmesser der Glasfaser zu beiden Seiten hin abnimmt.

Ähnlich der Bewegung von geladenen Teilchen, die in einer magnetischen Flasche, d.h., einem geeignet räumlich variierenden Magnetfeld, gespeichert sind, pendelt das Licht in dem neu entwickelten Mikroresonator der Mainzer Physiker zwischen zwei Umkehrpunkten entlang der Glasfaser hin und her. Aus diesem Grund spricht man bei dem hier realisierten Lichtspeicher von einem Flaschenresonator. Die Einstellung des Mainzer Flaschenresonators auf bestimmte Lichtfrequenzen erfolgt ganz einfach über Ziehen an den beiden Enden der ihn tragenden Glasfaser. Die dabei auftretende mechanische Spannung wirkt sich auf den Brechungsindex des Glases aus, so dass sich die Umlaufzeit des Lichts je nach Spannung verlängert oder verkürzt.

Mit seinen außergewöhnlichen Eigenschaften und seiner einfachen, auf Glasfasertechnologie beruhenden Bauart eröffnet der Mainzer Flaschenresonator zahlreiche Anwendungsfelder. "An der Universität Mainz möchten wir den neuen multifunktionalen Mikroresonator einsetzen, um winzige, nur aus einzelnen Photonen bestehende Lichtfelder mit einzelnen Atomen zu koppeln", erklärt Prof. Rauschenbeutel aus der Arbeitsgruppe QUANTUM, Quanten-, Atom- und Neutronenphysik im Institut für Physik der Universität Mainz. "Sollte das gelingen, so könnte man zum Beispiel eine glasfaserbasierte Quanten-Schnittstelle zwischen Licht und Materie realisieren", so Rauschenbeutel. Damit könnte ein wichtiger Beitrag zur Quantenkommunikation und zur zukünftigen Realisierung eines Quantencomputers geleistet werden.

Originalpublikation:
M. Pollinger, D. O' Shea, F. Warken, and A. Rauschenbeutel: Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator, in: Phys. Rev. Lett. 103, 053901 (2009), doi: 10.1103/PhysRevLett.103.053901; http://link.aps.org/doi/10.1103/PhysRevLett.103.053901.
Weitere Informationen:
Univ.-Prof. Dr. Arno Rauschenbeutel
Institut für Physik
QUANTUM - Quanten-, Atom- und Neutronenphysik
Johannes Gutenberg-Universität
D 55099 Mainz
Tel.: 06131 39-20203
Fax: 06131 39-26979
E-Mail: rauschenbeutel@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.103.053901
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften