Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker schließen Lücke für die Neutrinophysik

11.11.2011
Erstmals Verschwinden von Neutrinos über kurze Distanz nachgewiesen: Physiker der Universität Tübingen sind an der internationalen „Double-Chooz-Kollaboration“ beteiligt.

Physiker haben erstmals das Verschwinden von Antineutrinos über eine kurze Distanz in hoher Präzision nachgewiesen: An dem internationalen „Double-Chooz-Experiment“ sind auch Wissenschaftler der Universität Tübingen beteiligt. Der Forschungsverbund stellte seine Ergebnisse erstmals am 9. November auf der LowNu-Konferenz in Seoul, Korea, vorgestellt.

Mit den neuen Daten können Wissenschaftler nun den bislang unbekannten dritten Neutrino-Mischungswinkel bestimmen: Eine solche Messung hat wichtige Konsequenzen für die Teilchen- und Astroteilchenphysik; sie wird unser Bild der Neutrino-Oszillationen vervollständigen und zum Verständnis beitragen, warum wir im heutigen Universum Materie, aber keine Antimaterie vorfinden.

„Der dritte Mischungswinkel ist das noch fehlende Bindeglied in der Neutrinophysik. Eine präzise Messung desselben ist der Schlüssel für das Tor zu neuer Physik jenseits des Standardmodells der Teilchenphysik und wir stehen nun unmittelbar davor“, erklärt Hervé de Kerret vom „Centre National de la Recherche Scientifique“ in Frankreich, Sprecher der Double-Chooz-Kollaboration. „Die Erweiterungen des Experiments, die wir für die nächsten Jahre planen, werden sicherlich zu einer deutlich genaueren Messung führen“, erwartet der Tübinger Neutrinophysiker Prof. Tobias Lachenmaier.

Neutrinos sind die häufigsten, aber zugleich am schwierigsten nachzuweisenden Teilchen im Universum. Sie entstehen unter anderem bei Fusionsprozessen im Inneren der Sonne oder wenn kosmische Strahlung auf die Atmosphäre trifft. Sie existieren in drei Arten, „Flavour“ genannt. Dass sie sich von der einen in eine andere Art umwandeln können, ist seit den späten 1990er Jahren bekannt ‒ die sogenannte „Neutrino-Oszillation“ zeigt, dass Neutrinos eine Masse haben müssen.

Das Double-Chooz-Experiment widmet sich der Messung von Neutrino-Oszillationen mit bisher unerreichter Präzision, indem es Antineutrinos beobachtet, die in einem Kernreaktor bei Chooz in den französischen Ardennen entstehen. Die Wissenschaftler haben vor sechs Monaten mit der Datenaufnahme begonnen. Auf der LowNu-Konferenz in Korea berichten sie nun über neue Daten zur Oszillation über kurze räumliche Distanz: Diese basieren auf der Beobachtung des „Verschwindens“ von (Anti-)Neutrinos gegenüber dem erwarteten Neutrinofluss aus dem Kernreaktor.

Den drei verschiedenen Neutrino-Flavours entsprechen jeweils als Gegenstück drei geladene Leptonen: Elektron, Myon und Tau. Die Oszillationen hängen von drei Mischungsparametern ab, von denen zwei relativ groß sind und bereits gemessen wurden. Für den dritten Mischungswinkel, genannt θ13 (theta13), war bisher nur eine Obergrenze bekannt. Aus der Vermessung des „Verschwindens“ von elektronischen Antineutrinos hat der Double-Chooz-Verbund nun Hinweise auf eine Oszillation erhalten, die auch den dritten Mischungswinkel mit dem folgenden Wert einbezieht: sin2(2θ13) = 0.085 ± 0.051. Die Wahrscheinlichkeit, dass keine solche Oszillation vorliegt, beträgt nach den vorläufigen Resultaten nur 7,9 Prozent. Die Bestimmung dieses letzten Mischungswinkels liefert eine kritische Größe für künftige Experimente, mit denen Wissenschaftler einen Unterschied zwischen Neutrino- und Antineutrino-Oszillationen messen wollen. Darüber hinaus verweist dies indirekt auf den Ursprung der Asymmetrie zwischen Materie und Antimaterie im Universum.

Double-Chooz betreibt einen Detektor in einem Abstand von etwa 1000 Metern zu den Reaktorkernen. Die Genauigkeit der Messungen soll sich erhöhen, wenn 2012 in Frankreich ein zweiter Detektor im Abstand von 400 Metern in Betrieb genommen wird. Die Detektoren enthalten jeweils 10 m3 einer speziell für das Experiment entwickelten organischen Flüssigkeit („Szintillator“) als Nachweismedium. Eine wichtige Komponente des Double Chooz-Detektors wurde von Wissenschaftlern der Universität Tübingen konzipiert und hergestellt, mit wesentlicher Beteiligung von Doktoranden. Diese kann die von kosmischen Myonen erzeugten Störereignisse im Detektor erkennen, um sie so in der Datenanalyse zu beseitigen. Aus dem Vergleich bei laufenden und ausgeschalteten Reaktorblöcken bestimmte die Tübinger Arbeitsgruppe am Kepler Center für Astro- und Teilchenphysik den kleinen, verbleibenden Rest an Störereignissen. Dies hat die auf wenige Prozent genaue Messung des Flusses der Reaktorneutrinos ermöglicht ‒ ein wichtiger Beitrag bei der Bestimmung des dritten Neutrino-Mischungswinkels.

In der Double-Chooz-Kollaboration arbeiten Universitäten und Forschungseinrichtungen aus Brasilien, Deutschland, England, Frankreich, Japan, Russland, Spanien und den USA zusammen. In Deutschland sind neben der Universität Tübingen das Max-Planck-Institut für Kernphysik in Heidelberg und die Universitäten Aachen, Hamburg und die TU München beteiligt.

Weitere Informationen unter www.physik.uni-tuebingen.de/newsfullview-aktuell/article/erstes-resultat-eines-neuartigen-reaktorneutrino-experiments.html

Kontakt:
Prof. Tobias Lachenmaier
Universität Tübingen
Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-76287
tobias.lachenmaier@uni-tuebingen.de
Prof. Josef Jochum
Universität Tübingen
Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-74453
josef.jochum@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie