Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker schließen Lücke für die Neutrinophysik

11.11.2011
Erstmals Verschwinden von Neutrinos über kurze Distanz nachgewiesen: Physiker der Universität Tübingen sind an der internationalen „Double-Chooz-Kollaboration“ beteiligt.

Physiker haben erstmals das Verschwinden von Antineutrinos über eine kurze Distanz in hoher Präzision nachgewiesen: An dem internationalen „Double-Chooz-Experiment“ sind auch Wissenschaftler der Universität Tübingen beteiligt. Der Forschungsverbund stellte seine Ergebnisse erstmals am 9. November auf der LowNu-Konferenz in Seoul, Korea, vorgestellt.

Mit den neuen Daten können Wissenschaftler nun den bislang unbekannten dritten Neutrino-Mischungswinkel bestimmen: Eine solche Messung hat wichtige Konsequenzen für die Teilchen- und Astroteilchenphysik; sie wird unser Bild der Neutrino-Oszillationen vervollständigen und zum Verständnis beitragen, warum wir im heutigen Universum Materie, aber keine Antimaterie vorfinden.

„Der dritte Mischungswinkel ist das noch fehlende Bindeglied in der Neutrinophysik. Eine präzise Messung desselben ist der Schlüssel für das Tor zu neuer Physik jenseits des Standardmodells der Teilchenphysik und wir stehen nun unmittelbar davor“, erklärt Hervé de Kerret vom „Centre National de la Recherche Scientifique“ in Frankreich, Sprecher der Double-Chooz-Kollaboration. „Die Erweiterungen des Experiments, die wir für die nächsten Jahre planen, werden sicherlich zu einer deutlich genaueren Messung führen“, erwartet der Tübinger Neutrinophysiker Prof. Tobias Lachenmaier.

Neutrinos sind die häufigsten, aber zugleich am schwierigsten nachzuweisenden Teilchen im Universum. Sie entstehen unter anderem bei Fusionsprozessen im Inneren der Sonne oder wenn kosmische Strahlung auf die Atmosphäre trifft. Sie existieren in drei Arten, „Flavour“ genannt. Dass sie sich von der einen in eine andere Art umwandeln können, ist seit den späten 1990er Jahren bekannt ‒ die sogenannte „Neutrino-Oszillation“ zeigt, dass Neutrinos eine Masse haben müssen.

Das Double-Chooz-Experiment widmet sich der Messung von Neutrino-Oszillationen mit bisher unerreichter Präzision, indem es Antineutrinos beobachtet, die in einem Kernreaktor bei Chooz in den französischen Ardennen entstehen. Die Wissenschaftler haben vor sechs Monaten mit der Datenaufnahme begonnen. Auf der LowNu-Konferenz in Korea berichten sie nun über neue Daten zur Oszillation über kurze räumliche Distanz: Diese basieren auf der Beobachtung des „Verschwindens“ von (Anti-)Neutrinos gegenüber dem erwarteten Neutrinofluss aus dem Kernreaktor.

Den drei verschiedenen Neutrino-Flavours entsprechen jeweils als Gegenstück drei geladene Leptonen: Elektron, Myon und Tau. Die Oszillationen hängen von drei Mischungsparametern ab, von denen zwei relativ groß sind und bereits gemessen wurden. Für den dritten Mischungswinkel, genannt θ13 (theta13), war bisher nur eine Obergrenze bekannt. Aus der Vermessung des „Verschwindens“ von elektronischen Antineutrinos hat der Double-Chooz-Verbund nun Hinweise auf eine Oszillation erhalten, die auch den dritten Mischungswinkel mit dem folgenden Wert einbezieht: sin2(2θ13) = 0.085 ± 0.051. Die Wahrscheinlichkeit, dass keine solche Oszillation vorliegt, beträgt nach den vorläufigen Resultaten nur 7,9 Prozent. Die Bestimmung dieses letzten Mischungswinkels liefert eine kritische Größe für künftige Experimente, mit denen Wissenschaftler einen Unterschied zwischen Neutrino- und Antineutrino-Oszillationen messen wollen. Darüber hinaus verweist dies indirekt auf den Ursprung der Asymmetrie zwischen Materie und Antimaterie im Universum.

Double-Chooz betreibt einen Detektor in einem Abstand von etwa 1000 Metern zu den Reaktorkernen. Die Genauigkeit der Messungen soll sich erhöhen, wenn 2012 in Frankreich ein zweiter Detektor im Abstand von 400 Metern in Betrieb genommen wird. Die Detektoren enthalten jeweils 10 m3 einer speziell für das Experiment entwickelten organischen Flüssigkeit („Szintillator“) als Nachweismedium. Eine wichtige Komponente des Double Chooz-Detektors wurde von Wissenschaftlern der Universität Tübingen konzipiert und hergestellt, mit wesentlicher Beteiligung von Doktoranden. Diese kann die von kosmischen Myonen erzeugten Störereignisse im Detektor erkennen, um sie so in der Datenanalyse zu beseitigen. Aus dem Vergleich bei laufenden und ausgeschalteten Reaktorblöcken bestimmte die Tübinger Arbeitsgruppe am Kepler Center für Astro- und Teilchenphysik den kleinen, verbleibenden Rest an Störereignissen. Dies hat die auf wenige Prozent genaue Messung des Flusses der Reaktorneutrinos ermöglicht ‒ ein wichtiger Beitrag bei der Bestimmung des dritten Neutrino-Mischungswinkels.

In der Double-Chooz-Kollaboration arbeiten Universitäten und Forschungseinrichtungen aus Brasilien, Deutschland, England, Frankreich, Japan, Russland, Spanien und den USA zusammen. In Deutschland sind neben der Universität Tübingen das Max-Planck-Institut für Kernphysik in Heidelberg und die Universitäten Aachen, Hamburg und die TU München beteiligt.

Weitere Informationen unter www.physik.uni-tuebingen.de/newsfullview-aktuell/article/erstes-resultat-eines-neuartigen-reaktorneutrino-experiments.html

Kontakt:
Prof. Tobias Lachenmaier
Universität Tübingen
Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-76287
tobias.lachenmaier@uni-tuebingen.de
Prof. Josef Jochum
Universität Tübingen
Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-74453
josef.jochum@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie