Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker öffnen Tür in die Welt der Quasiteilchen

10.07.2014

Quasiteilchen sind keine echten physikalischen Teilchen, und doch kann man mit ihnen physikalische Phänomene in Festkörpern sehr gut erklären.

Nun haben Innsbrucker Physiker in einem Quantensystem Quasiteilchen erzeugt und dabei erstmals die Ausbreitung quantenmechanischer Verschränkung in einem Vielteilchensystem beobachtet. Sie berichten darüber in der Fachzeitschrift Nature.


Die Quasiteilchen bewegen sich vom Ort der Anregung in beiden Richtungen entlang der Ionenkette. Dabei entstehen Korrelationen zwischen den Teilchen. IQOQI

Die Physiker um Christian Roos vom Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften in Innsbruck haben im Labor eine neue experimentelle Plattform etabliert, um Quantenphänomene zu studieren.

In einer Kette aus gefangenen, ultrakalten Ionen können sie Quasiteilchen erzeugen und deren Eigenschaften sehr exakt kontrollieren und vermessen. „Quasiteilchen sind ein bewährtes Konzept der Physik, mit ihnen lässt sich das kollektive Verhalten von Teilchen vereinfacht sehr gut beschreiben“, sagt Christian Roos.

Ausbreitung von Verschränkung

Im Labor nutzen die Physiker zwischen sieben und fünfzehn Kalziumionen, die in einer Vakuumkammer gefangen und wie an einer Schnur aufgefädelt sind. Mit Hilfe von Lasern lassen sich die Quantenzustände der einzelnen Ionen präparieren. „Jedes Teilchen verhält sich wie ein kleiner Quantenmagnet, die sich dann auch gegenseitig beeinflussen“, erklärt Petar Jurcevic, Erstautor einer aktuellen Studie.

„Wenn wir eines der Teilchen gezielt anregen, werden die anderen Teilchen dadurch beeinflusst. Das kollektive Verhalten beschreiben wir als Quasiteilchen.“ Diese Quasiteilchen bewegen sich vom Ort der Anregung in beiden Richtungen entlang der Ionenkette. Dabei entstehen Korrelationen zwischen den Teilchen. Die Ausbreitung von Anregungen wurde in den vergangenen Jahren bereits in Experimenten mit neutralen Atomen erforscht. Dabei konnte auch die Entstehung von Korrelationen zwischen den Teilchen gezeigt werden.

„Wir haben nun erstmals nachgewiesen, dass es sich hierbei um Quantenkorrelationen handelt“, sagt Roos. „Durch die Messung dieser Korrelationen können wir die Quantenverschränkung der Teilchen quantifizieren.“ So konnten die Physiker erstmals zeigen, wie sich die Verschränkung der Teilchen in einem Quantensystem ausbreitet.

Im Gegensatz zu den bisherigen Experimenten ist es den Innsbrucker Forschern erstmals auch möglich, die Reichweite der wechselseitigen Beeinflussung der Teilchen genau einzustellen: vom nächsten Nachbarn bis ins Unendliche. So können sie immer neue, andere Quasiteilchen in dem Quantensystem entstehen lassen.

Neue Forschung an Quasiteilchen

„Auf diese Weise können wir die Quasiteilchen fast nach Belieben manipulieren“, ist der an der Arbeit beteiligte Theoretiker Philipp Hauke begeistert. „Wir haben Jahrzehnte lang gebraucht, bis wir einzelne Quantenteilchen genau kontrollieren und manipulieren konnten. Nun steht uns auch eine Plattform zur Verfügung, mit der wir Quasiteilchen in ähnlicher Weise untersuchen und damit physikalische Phänomene erforschen können, die bisher experimentell nicht zugänglich waren.“

So lässt sich damit zum Beispiel untersuchen, wie ein Quantensystem sein thermisches Gleichgewicht erreicht, ein Prozess, der bis heute noch nicht verstanden wird. „Ein großes Ziel ist es auch, Quasiteilchen für die Quanteninformationsverarbeitung zu nutzen“, sagt Hauke. Aber auch die Rolle der Quantenphysik in Transportprozessen, wie sie ähnlich auch in der Biologie auftreten, könnte auf dieser Plattform studiert werden. Konkret arbeiten die Innsbrucker Physiker um Christian Roos nun an der Idee, erstmals die Wechselwirkung von zwei Quasiteilchen eingehender zu studieren.

Die nun in der Fachzeitschrift Nature veröffentlichte Studie entstand in einer Zusammenarbeit der theoretischen Forschungsgruppe um Peter Zoller und der Experimentatoren um Rainer Blatt am Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften und der Universität Innsbruck. Finanziell gefördert wurde sie vom österreichischen Wissenschaftsfonds FWF, der Europäischen Kommission und dem Europäischen Forschungsrat ERC sowie der Tiroler Industrie.

Publikation: Quasiparticle engineering and entanglement propagation in a quantum many-body system. P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos. Nature 2014 DOI: 10.1038/nature13461

Rückfragehinweis:
Dr. Christian Roos
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Tel.: +43 512 507 4728
E-Mail: christian.roos@uibk.ac.at

Dr. Christian Flatz
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://quantumoptics.at - Quantum Optics and Spectroscopy Group

Dr. Christian Flatz | Universität Innsbruck

Weitere Berichte zu: Ionen Quanteninformation Quantenoptik Quantensystem Quasiteilchen Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive