Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker nutzen winzige Diamanten als Lichtquelle

17.06.2013
Moderne Kommunikationstechnologie basiert darauf, dass Lichtimpulse durch Glasfaserkabel übertragen werden.

An die Stelle von Lichtimpulsen, die aus „Bündeln“ von Lichtteilchen bestehen, sollen in Zukunft einzelne Lichtteilchen als Informationsträger treten – was unter anderem eine vollständig abhörsichere Datenübertragung in der Quantenkommunikation ermöglicht.


Das Bild zeigt den Aufbau der neuartigen Lichtquelle der Saarbrücker Physiker um Professor Becher. In der Mitte der Apparatur befindet sich einer der beiden Spiegel. Auf diesem Spiegel aufgebracht sind die winzigen Diamanten, die mit einem grünen Lichtstrahl beleuchtet werden. Direkt daneben liegt die Glasfaser mit dem eingebauten zweiten Spiegel (rechts im Bild), die die von den Diamanten erzeugten Lichtteilchen transportiert. AG Becher

Derzeit arbeiten Forscher an alltagstauglichen Lichtquellen, die einzelne Photonen emittieren. Physiker um Professor Christoph Becher von der Saar-Uni nutzen hierfür Nanodiamanten und haarfeine Glasfasern. In einer neuen Studie stellen sie den Aufbau dieser Lichtquelle vor.

Winzig klein sind die Diamanten, die die Saarbrücker Forscher für ihre Experimente verwenden: weniger als 100 Nanometer groß – das entspricht etwa einem Tausendstel eines Haardurchmessers. Und dabei haben es die Physiker nicht auf die lupenreinen, sondern auf die verunreinigten Edelsteine abgesehen. „Für unsere Arbeiten brauchen wir Diamanten, die einen speziellen Einschluss, genauer gesagt, einen Defekt aufweisen“, erklärt Christoph Becher, Professor für Experimentalphysik an der Universität des Saarlandes.

„Dieser besteht aus einem Stickstoffatom und einer angrenzenden Leerstelle in der Gitterstruktur des Diamanten. Er wird auch Farbzentrum genannt.“ Bestrahlt man die Nanodiamanten nun mit einem Laser, beginnen die Farbzentren Licht auszusenden – ebenso wie es Atome tun. „Dieses Licht verhält sich so, als ob es von einem einzelnen Atom stammen würde und besteht aus der gewünschten Abfolge einzelner Lichtteilchen“, sagt Becher weiter

Die Saarbrücker Physiker haben diese in Forscherkreisen bekannte Lichtquelle nun weiterentwickelt. Hierfür haben sie einen Nanodiamanten zwischen zwei Spiegeln platziert. Die beiden sich gegenüber liegenden Spiegel bilden einen Lichtspeicher, in dem das Licht über 1.000 Mal hin- und herreflektiert wird, bevor es durch einen der Spiegel entweichen kann. „Die intensive Wechselwirkung des gespeicherten Lichts mit dem Farbzentrum im Nanodiamanten führt dazu, dass einzelne Lichtteilchen mit genau definierten Eigenschaften und mit hoher Effizienz ausgesandt werden. In gewissen Grenzen kann man sich dabei auch die Farbe des Lichtes aussuchen“, berichtet der Physik-Professor. Je kleiner die Spiegel sind, und umso geringer ihr Abstand, desto intensiver ist die Wechselwirkung im Lichtspeicher und desto besser lassen sich die Eigenschaften der einzelnen Lichtteilchen kontrollieren.

Das Besondere beim Versuchsaufbau der Saarbrücker Physiker ist die Anordnung der Spiegel: Einer der Spiegel sitzt direkt auf der Spitze einer haardünnen Glasfaser. „Die einzelnen Lichtteilchen werden auf diese Weise direkt in eine Faser ausgesandt – also dorthin, wo man sie für die Datenübertragung gerne haben möchte“, erklärt Roland Albrecht, Doktorand bei Professor Becher. „Zudem liegt der Vorteil unseres Aufbaus darin, dass er bei Raumtemperatur und ohne großen Apparateaufwand funktioniert. Er bietet somit Potential, ihn praktisch einzusetzen.“

Im nächsten Schritt möchten die Saarbrücker Forscher die Spiegel weiter verkleinern, sodass möglichst alle ausgesandten Lichtteilchen in der Glasfaser gesammelt werden können. Ferner versuchen sie den Nanodiamanten und die Glasfaser-Lichtspeicher auf Temperaturen nahe dem absoluten Temperaturnullpunkt abzukühlen. „Dann verändern sich die Eigenschaften des Systems so, dass Quanteninformation zwischen dem Farbzentrum im Diamanten und den einzelnen Lichtteilchen ausgetauscht werden kann – die Schnittstelle für einen zukünftigen Quantencomputer oder die Übertragung von Quanteninformation über lange Strecken“, erklärt Becher.

Die Arbeit der Saarbrücker Wissenschaftler ist unter anderem im Rahmen des Verbundprojekts QuOReP (Quanten-Repeater-Plattform mit Methoden der Quantenoptik), das vom Bundesministerium für Bildung und Forschung gefördert wird, entstanden. Die winzigen Spiegel für den Versuchsaufbau wurden in Zusammenarbeit mit Professor Jakob Reichel an der École normale supérieure in Paris hergestellt.
Die Studie „Coupling of a single NV-center in diamond to a fiber-based microcavity“ wurde in Physical Review Letters veröffentlicht. DOI: 10.1103/PhysRevLett.110.243602

Fragen beantworten:

Prof. Dr. Christoph Becher
Experimentalphysik
Tel.: 0681 302-2466
E-Mail: christoph.becher(at)physik.uni-saarland.de

Diplom-Physiker Roland Albrecht
Experimentalphysik
Tel.: 0681 302-3418
E-Mail: r.albrecht(at)physik.uni-saarland.de

Melanie Löw | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie