Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker und Mathematiker erforschen räumlich komplexe Strukturen

27.07.2011
Welche Form hat eine typische Zelle in einem Schaum? Die Antwort auf diese Frage zu kennen, ist äußerst hilfreich, wenn möglichst leichte und zugleich stabile Bauteile entstehen sollen.

Bevor die Ingenieurwissenschaftler ans Werk gehen, kann die Kombination von Mathematik und Physik solide Grundlagen für derart komplexe Strukturen schaffen. Eine Brücke zwischen den beiden Disziplinen schlägt die neue Forschergruppe „Geometry and Physics of Spatial Random Systems“ (GPSRS), welche die Deutsche Forschungsgemeinschaft am Institut für Theoretische Physik der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und am Karlsruher Institut für Technologie einrichtet.


Ein ‚Gyroid‘ ist ein dreidimensionales Labyrinth, das von periodischen Minimalflächen begrenzt ist. Die Physik von Flüssigkeiten in solchen Kanälen – visualisiert durch blaue Kügelchen – hängt von der Geometrie der Wände ab. Abbildung: Institut für Theoretische Physik

Über die drei Jahre der ersten Förderperiode sind für insgesamt sechs Projekte mehr als 1,5 Millionen Euro vorgesehen, die zwischen den zwei Institutionen geteilt werden: Eine Hälfte der Summe geht an Erlanger Physiker, die andere an Mathematiker in Karlsruhe und im dänischen Aarhus.

Drei der bewilligten Projekte sind am Lehrstuhl von Prof. Dr. Klaus Mecke angesiedelt, der gemeinsam mit seinem Mitarbeiter Dr. Gerd Schröder-Turk die Forschungsarbeiten leitet. Die Zusammenarbeit mit den Mathematikern vom Institut für Technologie in Karlsruhe (Sprecher: Prof. Dr. Günter Last) wird vom dänischen Exzellenzzentrum für Stochastische Geometrie und Bioimaging in Aarhus (Direktorin: Prof. Dr. Eva Vedel Jensen) unterstützt, das zusätzliche Mittel aus Dänemark beibringt. Nach der ersten Förderperiode besteht die Möglichkeit der Verlängerung um weitere drei Jahre.

Übersetzt bedeutet der Titel der Forschergruppe in etwa „Geometrie und Physik von räumlich komplexen Strukturen“. Damit sind Materialien wie Schäume, Granulate oder Flüssigkristalle gemeint. Um solche kompliziert aufgebauten Werkstoffe besser zu verstehen und ihre Eigenschaften bzw. die Reaktionen auf vorgegebene Bedingungen beschreiben zu können, ist die Weiterentwicklung von Methoden und Modellen der räumlichen Stochastik und der Integralgeometrie geplant. Die dafür erforderliche Verbindung von Physik und Geometrie hat in Erlangen eine lange Tradition und wird am Institut für Theoretische Physik als zentrale Aufgabe gesehen.

Die Aufgabe der Statistischen Physik in Erlangen ist es, grundlegende Beziehungen zwischen geometrischen und physikalischen Eigenschaften von kondensierter Materie herzuleiten. Helfen sollen dabei Methoden der Feldtheorie, der Dichtefunktionaltheorie und der Perkolationstheorie. Letztere beschreibt zum Beispiel das „Durchsickern“ von Wasser durch ein poröses Material und die Abhängigkeit der durchfließenden Wassermenge von der Form des kompliziert zusammenhängenden Porenraumes – ein Vorgang, wie er in vielen Küchen allgegenwärtig ist, nämlich beim Zubereiten von Filterkaffee. Erstaunlicherweise ist das thermodynamische Verhalten von Flüssigkeiten in Poren und Kanälen (siehe Bild) nur von wenigen geometrischen Größen der Wände abhängig und nicht von Details der komplizierten Porenform. Die Dichte und mikroskopische Struktur von Flüssigkeiten, aber auch von physikalisch ähnlichen Substanzen können mittels Dichtefunktionaltheorie berechnet werden. Was sich im Mikro-und Nano-Bereich abspielt, hängt entscheidend von der Form der Teilchen ab. Längliche Partikel können beispielsweise Flüssigkristallstrukturen ausbilden, die technisch bei Flachbildschirmen (LCD) verwendet werden. Die Verbindung von Geometrie und Physik ist zum Verständnis dieser Phänomene unverzichtbar.

Mit dieser wissenschaftlichen Ausrüstung könnten sich Antworten auf Fragen wie die folgenden finden lassen, die technologisch wichtig, aber ungelöst sind. Warum lassen sich ellipsenförmige Körner dichter packen als kugelförmige? Wie kann man den Transport durch poröse Materialien durch die Form und Ausrichtung der Poren kontrollieren? Auch die Klärung der Zellstruktur von Schäumen gehört in diesen Zusammenhang. So erleichtern die schwierigsten, vermeintlich alltagsfernen mathematisch-physikalischen Grundlagenforschungen den Umgang mit ganz praktischen Aufgaben.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 29.000 Studierenden, 590 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

Weitere Informationen für die Medien:

Prof. Dr. Klaus Mecke
Tel.: 09131/85-28441
klaus.mecke@physik.uni-erlangen.d

Dr. Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften