Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker und Mathematiker erforschen räumlich komplexe Strukturen

27.07.2011
Welche Form hat eine typische Zelle in einem Schaum? Die Antwort auf diese Frage zu kennen, ist äußerst hilfreich, wenn möglichst leichte und zugleich stabile Bauteile entstehen sollen.

Bevor die Ingenieurwissenschaftler ans Werk gehen, kann die Kombination von Mathematik und Physik solide Grundlagen für derart komplexe Strukturen schaffen. Eine Brücke zwischen den beiden Disziplinen schlägt die neue Forschergruppe „Geometry and Physics of Spatial Random Systems“ (GPSRS), welche die Deutsche Forschungsgemeinschaft am Institut für Theoretische Physik der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und am Karlsruher Institut für Technologie einrichtet.


Ein ‚Gyroid‘ ist ein dreidimensionales Labyrinth, das von periodischen Minimalflächen begrenzt ist. Die Physik von Flüssigkeiten in solchen Kanälen – visualisiert durch blaue Kügelchen – hängt von der Geometrie der Wände ab. Abbildung: Institut für Theoretische Physik

Über die drei Jahre der ersten Förderperiode sind für insgesamt sechs Projekte mehr als 1,5 Millionen Euro vorgesehen, die zwischen den zwei Institutionen geteilt werden: Eine Hälfte der Summe geht an Erlanger Physiker, die andere an Mathematiker in Karlsruhe und im dänischen Aarhus.

Drei der bewilligten Projekte sind am Lehrstuhl von Prof. Dr. Klaus Mecke angesiedelt, der gemeinsam mit seinem Mitarbeiter Dr. Gerd Schröder-Turk die Forschungsarbeiten leitet. Die Zusammenarbeit mit den Mathematikern vom Institut für Technologie in Karlsruhe (Sprecher: Prof. Dr. Günter Last) wird vom dänischen Exzellenzzentrum für Stochastische Geometrie und Bioimaging in Aarhus (Direktorin: Prof. Dr. Eva Vedel Jensen) unterstützt, das zusätzliche Mittel aus Dänemark beibringt. Nach der ersten Förderperiode besteht die Möglichkeit der Verlängerung um weitere drei Jahre.

Übersetzt bedeutet der Titel der Forschergruppe in etwa „Geometrie und Physik von räumlich komplexen Strukturen“. Damit sind Materialien wie Schäume, Granulate oder Flüssigkristalle gemeint. Um solche kompliziert aufgebauten Werkstoffe besser zu verstehen und ihre Eigenschaften bzw. die Reaktionen auf vorgegebene Bedingungen beschreiben zu können, ist die Weiterentwicklung von Methoden und Modellen der räumlichen Stochastik und der Integralgeometrie geplant. Die dafür erforderliche Verbindung von Physik und Geometrie hat in Erlangen eine lange Tradition und wird am Institut für Theoretische Physik als zentrale Aufgabe gesehen.

Die Aufgabe der Statistischen Physik in Erlangen ist es, grundlegende Beziehungen zwischen geometrischen und physikalischen Eigenschaften von kondensierter Materie herzuleiten. Helfen sollen dabei Methoden der Feldtheorie, der Dichtefunktionaltheorie und der Perkolationstheorie. Letztere beschreibt zum Beispiel das „Durchsickern“ von Wasser durch ein poröses Material und die Abhängigkeit der durchfließenden Wassermenge von der Form des kompliziert zusammenhängenden Porenraumes – ein Vorgang, wie er in vielen Küchen allgegenwärtig ist, nämlich beim Zubereiten von Filterkaffee. Erstaunlicherweise ist das thermodynamische Verhalten von Flüssigkeiten in Poren und Kanälen (siehe Bild) nur von wenigen geometrischen Größen der Wände abhängig und nicht von Details der komplizierten Porenform. Die Dichte und mikroskopische Struktur von Flüssigkeiten, aber auch von physikalisch ähnlichen Substanzen können mittels Dichtefunktionaltheorie berechnet werden. Was sich im Mikro-und Nano-Bereich abspielt, hängt entscheidend von der Form der Teilchen ab. Längliche Partikel können beispielsweise Flüssigkristallstrukturen ausbilden, die technisch bei Flachbildschirmen (LCD) verwendet werden. Die Verbindung von Geometrie und Physik ist zum Verständnis dieser Phänomene unverzichtbar.

Mit dieser wissenschaftlichen Ausrüstung könnten sich Antworten auf Fragen wie die folgenden finden lassen, die technologisch wichtig, aber ungelöst sind. Warum lassen sich ellipsenförmige Körner dichter packen als kugelförmige? Wie kann man den Transport durch poröse Materialien durch die Form und Ausrichtung der Poren kontrollieren? Auch die Klärung der Zellstruktur von Schäumen gehört in diesen Zusammenhang. So erleichtern die schwierigsten, vermeintlich alltagsfernen mathematisch-physikalischen Grundlagenforschungen den Umgang mit ganz praktischen Aufgaben.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 29.000 Studierenden, 590 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

Weitere Informationen für die Medien:

Prof. Dr. Klaus Mecke
Tel.: 09131/85-28441
klaus.mecke@physik.uni-erlangen.d

Dr. Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte