Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker machen Lichtquanten fit für die Datenautobahn

05.10.2012
Technologien wie die Quantenkommunikation eröffnen neue Perspektiven wie den abhörsicheren Datenaustausch oder die sekundenschnelle Berechnung komplexer Probleme.

Dabei spielen Lichtteilchen, so genannte Lichtquanten oder Photonen, eine wichtige Rolle als Informationsträger. Deren Wellenlänge liegt oft im sichtbaren Spektralbereich. Das macht sie für den Versand durch Glasfaserkabel ungeeignet.


Experimenteller Aufbau zur Umwandlung der Wellenlänge von einzelnen Photonen: Im Bild wird rotes Laserlicht (hier von rechts bzw. von unten) durch einen speziellen Kristall aus Lithiumniobat geschickt. Der durchsichtige Kristall liegt auf einer vergoldeten Halterung.

Foto: Andreas Lenhard

Physiker der Saar-Uni und der Universität Stuttgart haben in einem Experiment gezeigt, wie man diese Probleme lösen kann, indem sie die Wellenlänge einzelner Photonen mithilfe eines Kristalls gezielt veränderten. Die Arbeit wurde jetzt in der Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Bei der Erzeugung von Lichtteilchen mit genau bestimmten Eigenschaften kämpfen Wissenschaftler seit über 30 Jahren mit Herausforderungen. Die Wellenlängen der Photonen, die von den bislang untersuchten Quantensystemen ausgesandt werden, bewegen sich sehr häufig im sichtbaren oder nahinfraroten Spektralbereich zwischen 600 bis 1000 Nanometer. Diese Lichtteilchen sind für den Transport über längere Glasfaserstrecken ungeeignet, da sie viel zu große Verluste erfahren.
Um längere Strecken zu überbrücken, ist es daher zwingend notwendig, dass die Wellenlänge (die „Farbe“) der Photonen in einem Spektralbereich liegt, bei dem die Absorption in Glasfasern und damit der Informationsverlust möglichst gering ist. Dies sind die so genannten Telekom-Wellenlängen im Infrarotbereich, die etwa im Bereich einer Wellenlänge von 1300 Nanometer und 1550 Nanometer liegen. Mit solchen Telekom-Photonen rückt die Vision der Quantenphysiker eines „Quanten-Internets“, das eines Tages mehrere Quantenrechner miteinander vernetzen kann, einen Schritt weiter an die Realität heran.

Wissenschaftler um Christoph Becher, Professor für Experimentalphysik an der Universität des Saarlandes, haben nun gemeinsam mit ihren Kollegen um Professor Peter Michler vom Institut für Halbleiteroptik und Funktionelle Grenzflächen der Universität Stuttgart einen wichtigen Beitrag dazu geleistet, diese Schwierigkeiten zu überwinden. In ihrer Arbeit, die sie jetzt im Fachblatt „Physical Review Letters“ veröffentlicht haben, gelang es ihnen, einzelne rote Photonen in Photonen bei einer Telekomwellenlänge (1313 nm) umzuwandeln. Die roten Photonen wurden in einem „künstlichen Atom“, einem sogenannten Halbleiter-Quantenpunkt, erzeugt und zusammen mit einem starken Laserstrahl durch einen speziellen Kristall aus Lithiumniobat geschickt. An dessen Ende treten die Photonen mit veränderter Wellenlänge aus.

Die erreichte Effizienz der Wellenlängenumsetzung lag bei über 30 Prozent, es wird also etwa jedes dritte Lichtquant umgewandelt. Die Forscher konnten erstmals vollständig experimentell nachweisen, dass wichtige, aber gleichzeitig auch sehr fragile Quanteneigenschaften des Lichts bei dieser Wellenlängenkonversion erhalten bleiben. Dies ist fundamental für Anwendungen in der Quanteninformationsverarbeitung. „In unserem Experiment haben wir gezeigt, was technisch möglich ist.“ erklärt Christoph Becher. „Wir können aber noch besser werden. Dazu müssen wir die Effizienz weiter steigern und eine Wellenlänge um 1550 Nanometer wählen. Dies ist der Spektralbereich, bei dem Glasfasern die ultimativ niedrigsten Verluste aufweisen. Daran wollen wir in einem zukünftigen Projekt mit den Stuttgarter Kollegen arbeiten.“

Kontakt:
Prof. Dr. Christoph Becher
Tel. 0681 302-2466
E-Mail: christoph.becher@physik.uni-saarland.de
Prof. Dr. Peter Michler
Tel. 0711 685-64660
E-Mail: p.michler@ihfg.uni-stuttgart.de
Sebastian Zaske (Erstautor), Andreas Lenhard, Christian A. Keßler, Jan Kettler,
Christian Hepp, Carsten Arend, Roland Albrecht, Wolfgang-Michael Schulz,
Michael Jetter, Peter Michler, and Christoph Becher: Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter

Thorsten Mohr | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de
http://link.aps.org/doi/10.1103/PhysRevLett.109.147404

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie