Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker machen Lichtquanten fit für die Datenautobahn

05.10.2012
Technologien wie die Quantenkommunikation eröffnen neue Perspektiven wie den abhörsicheren Datenaustausch oder die sekundenschnelle Berechnung komplexer Probleme.

Dabei spielen Lichtteilchen, so genannte Lichtquanten oder Photonen, eine wichtige Rolle als Informationsträger. Deren Wellenlänge liegt oft im sichtbaren Spektralbereich. Das macht sie für den Versand durch Glasfaserkabel ungeeignet.


Experimenteller Aufbau zur Umwandlung der Wellenlänge von einzelnen Photonen: Im Bild wird rotes Laserlicht (hier von rechts bzw. von unten) durch einen speziellen Kristall aus Lithiumniobat geschickt. Der durchsichtige Kristall liegt auf einer vergoldeten Halterung.

Foto: Andreas Lenhard

Physiker der Saar-Uni und der Universität Stuttgart haben in einem Experiment gezeigt, wie man diese Probleme lösen kann, indem sie die Wellenlänge einzelner Photonen mithilfe eines Kristalls gezielt veränderten. Die Arbeit wurde jetzt in der Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Bei der Erzeugung von Lichtteilchen mit genau bestimmten Eigenschaften kämpfen Wissenschaftler seit über 30 Jahren mit Herausforderungen. Die Wellenlängen der Photonen, die von den bislang untersuchten Quantensystemen ausgesandt werden, bewegen sich sehr häufig im sichtbaren oder nahinfraroten Spektralbereich zwischen 600 bis 1000 Nanometer. Diese Lichtteilchen sind für den Transport über längere Glasfaserstrecken ungeeignet, da sie viel zu große Verluste erfahren.
Um längere Strecken zu überbrücken, ist es daher zwingend notwendig, dass die Wellenlänge (die „Farbe“) der Photonen in einem Spektralbereich liegt, bei dem die Absorption in Glasfasern und damit der Informationsverlust möglichst gering ist. Dies sind die so genannten Telekom-Wellenlängen im Infrarotbereich, die etwa im Bereich einer Wellenlänge von 1300 Nanometer und 1550 Nanometer liegen. Mit solchen Telekom-Photonen rückt die Vision der Quantenphysiker eines „Quanten-Internets“, das eines Tages mehrere Quantenrechner miteinander vernetzen kann, einen Schritt weiter an die Realität heran.

Wissenschaftler um Christoph Becher, Professor für Experimentalphysik an der Universität des Saarlandes, haben nun gemeinsam mit ihren Kollegen um Professor Peter Michler vom Institut für Halbleiteroptik und Funktionelle Grenzflächen der Universität Stuttgart einen wichtigen Beitrag dazu geleistet, diese Schwierigkeiten zu überwinden. In ihrer Arbeit, die sie jetzt im Fachblatt „Physical Review Letters“ veröffentlicht haben, gelang es ihnen, einzelne rote Photonen in Photonen bei einer Telekomwellenlänge (1313 nm) umzuwandeln. Die roten Photonen wurden in einem „künstlichen Atom“, einem sogenannten Halbleiter-Quantenpunkt, erzeugt und zusammen mit einem starken Laserstrahl durch einen speziellen Kristall aus Lithiumniobat geschickt. An dessen Ende treten die Photonen mit veränderter Wellenlänge aus.

Die erreichte Effizienz der Wellenlängenumsetzung lag bei über 30 Prozent, es wird also etwa jedes dritte Lichtquant umgewandelt. Die Forscher konnten erstmals vollständig experimentell nachweisen, dass wichtige, aber gleichzeitig auch sehr fragile Quanteneigenschaften des Lichts bei dieser Wellenlängenkonversion erhalten bleiben. Dies ist fundamental für Anwendungen in der Quanteninformationsverarbeitung. „In unserem Experiment haben wir gezeigt, was technisch möglich ist.“ erklärt Christoph Becher. „Wir können aber noch besser werden. Dazu müssen wir die Effizienz weiter steigern und eine Wellenlänge um 1550 Nanometer wählen. Dies ist der Spektralbereich, bei dem Glasfasern die ultimativ niedrigsten Verluste aufweisen. Daran wollen wir in einem zukünftigen Projekt mit den Stuttgarter Kollegen arbeiten.“

Kontakt:
Prof. Dr. Christoph Becher
Tel. 0681 302-2466
E-Mail: christoph.becher@physik.uni-saarland.de
Prof. Dr. Peter Michler
Tel. 0711 685-64660
E-Mail: p.michler@ihfg.uni-stuttgart.de
Sebastian Zaske (Erstautor), Andreas Lenhard, Christian A. Keßler, Jan Kettler,
Christian Hepp, Carsten Arend, Roland Albrecht, Wolfgang-Michael Schulz,
Michael Jetter, Peter Michler, and Christoph Becher: Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter

Thorsten Mohr | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de
http://link.aps.org/doi/10.1103/PhysRevLett.109.147404

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie