Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker koppeln weit entfernte Kernspins mit einem einzelnen Elektron

12.07.2016

Forschende der Universität Basel haben erstmals die Kernspins von weit entfernten Atomen mithilfe eines einzelnen Elektrons zur Kopplung gebracht. An dem sehr komplexen Experiment waren gleich drei Forschungsgruppen des Departements Physik beteiligt. Die Fachzeitschrift «Nature Nanotechnology» hat die Resultate veröffentlicht.

Bei den meisten Materialien beeinflussen sich die Kernspins von benachbarten Atomen nur sehr schwach, da die winzigen Kerne tief im Innern der Atome liegen. Anders sieht es bei Metallen aus, die frei bewegliche Elektronen aufweisen. Die Elektronenspins sind in der Lage, weit auseinanderliegende Kernspins miteinander zu koppeln. Diese nach vier Physikern benannte RKKY-Wechselwirkung wurde bereits in den 50er Jahren entdeckt.


Illustration eines Halbleiter-Quantenpunkts aus Indiumarsenid/Galliumarsenid (Indium, Gallium, Arsen in gelb, blau und lila). Zwei entferne Kernspins (gelbe Pfeile) sind durch den Spin eines Elektrons miteinander gekoppelt, das um die Atome im roten Bereich kreist. (Bild: Universität Basel, Departement Physik)

Einzelner Elektronenspin verbindet Kernspins

Forscher am Departement für Physik der Universität Basel ist es nun zum ersten Mal gelungen, diesen Mechanismus im Experiment an einem einzigen Elektron zu demonstrieren und mit einer Quanten-Theorie zu beschreiben. Dazu hat das Team um Prof. Richard Warburton ein einzelnes Elektron in einen Quantenpunkt eingeschleust.

Mithilfe einer in Basel entwickelten Methode zur Messung der Kernspinresonanz konnten sie zeigen, dass das Elektron Kernspins koppelte, die bis zu fünf Nanometer auseinanderlagen – eine riesige Distanz in der Welt der Kernspins. Relevant sind die Ergebnisse insbesondere für die Entwicklung von Spin-Qubits, die Elektronenspins als Informationsträger nutzen möchten, beschränkt doch die Wechselwirkung die Stabilität der Quanteninformation.

«Das ist wohl das komplizierteste Experiment, das unser Team je durchgeführt hat», sagt Prof. Richard Warburton, Leiter der Forschungsgruppe Nano-Photonics am Basler Departement für Physik. Zugleich zeigt er sich begeistert von der Kooperation unter drei Basler Forschungsgruppen, die dieses Experiment ermöglicht hat. «Es waren so viele verschiedene Aspekte zu beachten – eine Herausforderung, die wir nur dank der grossartigen Zusammenarbeit an unserem Departement meistern konnten.»

Die Forschungsgruppe von Prof. Martino Poggio stellte ihre Expertise im Bereich Kernspinresonanz zur Verfügung, während das Team um Prof. Daniel Loss in monatelanger Arbeit die Quanten-Theorie zum Experiment berechnete. Ebenfalls beteiligt war die Ruhr-Universität Bochum, welche die Halbleiter-Chips für das Experiment herstellte.

Das Projekt wurde gefördert vom Nationalen Forschungsschwerpunkt Quantum Science and Technology (NCCR QSIT), vom Schweizerischen Nationalfonds und vom Swiss Nanoscience Institute.

Originalbeitrag

Gunter Wüst, Mathieu Munsch, Franziska Maier, Andreas V. Kuhlmann, Arne Ludwig, Andreas D. Wieck, Daniel Loss, Martino Poggio, and Richard J. Warburton
Role of the electron spin in the nuclear spin coherence in a quantum dot
Nature Nanotechnology (2016), doi: 10.1038/nnano.2016.114

Weitere Auskünfte

Prof. Dr. Richard J. Warburton, Universität Basel, Departement Physik, Tel. +41 61 267 35 60, E-Mail: richard.warburton@unibas.ch

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics