Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker haben den Dreh mit den zweidimensionalen Kristallen raus

14.05.2018

Regensburger Physiker untersuchen in einem internationalen Team atomar dünne Heterostrukturen

Regensburger Physiker um Dr. Tobias Korn, Institut für Experimentelle und Angewandte Physik der Universität Regensburg, haben in einer internationalen Kollaboration mit Forschern der TU Dresden und der Columbia University in New York atomar dünne Heterostrukturen aus den zweidimensionalen Materialien Molybdändisulfid (MoS2) und Wolframdiselenid (WSe2) untersucht und herausgefunden, dass sich die Ladungsträger (Elektronen und Löcher) in einer solchen Struktur nicht, wie bisher angenommen, komplett voneinander trennen, sondern sich teilweise in beiden Materialien gleichzeitig aufhalten. Dies ist eine wichtige Erkenntnis, sowohl für die Grundlagenforschung als auch für technologische Anwendungen.


Bei der Herstellung einer MoS2/WSe2-Heterostruktur können die Kristalle gezielt gegeneinander verdreht werden, um die elektronischen und optischen Eigenschaften der Struktur zu kontrollieren.

Fabian Mooshammer – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Von Solarzellen bis hin zu Computern basiert Elektronik auf Halbleitern, welche typischerweise elektrischen Strom im Gegensatz zu Metallen nur schlecht leiten. Der Grund hierfür ist, dass in Metallen frei bewegliche Elektronen vorhanden sind, in Halbleitern sind die Elektronen jedoch stark gebunden und daher unbeweglich.

Erst wenn man diese Ladungsträger beispielsweise mittels Licht, Wärme oder elektrischer Spannung anregt, können sie sich frei bewegen. Das hierbei angeregte, negativ geladene Elektron hinterlässt dabei ein positiv geladenes Loch. Kombiniert man zwei unterschiedliche Halbleiter geschickt in einer sogenannten Heterostruktur, so können die, z. B. durch Sonnenlicht angeregten Elektronen und Löcher, räumlich voneinander getrennt werden, wodurch in Solarzellen ein elektrischer Strom fließen kann.

Derzeit besteht Elektronik hauptsächlich aus kristallinem Silizium, aber in den vergangenen Jahren haben sich sogenannte zweidimensionale Materialien als erfolgsversprechende Kandidaten für zukünftige flexible und ultradünne Halbleitertechnologie bewiesen.

Diese neuartigen Kristalle sind nur wenige Atomlagen dünn und können mit geringem technischem Aufwand präzise „aufeinandergestapelt“ werden. Bisher war man davon ausgegangen, dass sich die angeregten Ladungsträger auch in den so hergestellten ultradünnen Heterostrukturen räumlich komplett voneinander trennen, dass also das Elektron in das eine Material wandert und das Loch in das andere.

Ein entscheidender experimenteller Schritt für das Resultat der internationalen Kollaboration war, dass es den Forschern in Regensburg gelang, Heterostrukturen herzustellen, bei denen die beiden atomar dünnen Schichten präzise gegeneinander verdreht wurden. Dieser weitere Freiheitsgrad der zweidimensionalen Materialien gegenüber herkömmlichen Halbleitern wurde hierbei eingesetzt, um optische und elektronische Eigenschaften der Heterostrukturen gezielt zu beeinflussen.

Im Wesentlichen basiert der Effekt darauf, dass sich die beiden zweidimensionalen Kristalle für unterschiedliche Drehwinkel unterschiedlich nahe kommen, weil sich die Materialien unterschiedlich stark „im Weg sind“. Durch diesen veränderten vertikalen Abstand der beiden Halbleiter wird auch die Anziehung zwischen Elektron und Loch gezielt verändert.

In anschließenden Experimenten konnte beobachtet werden, dass die optischen Eigenschaften der Heterostrukturen eine deutliche Abhängigkeit vom Drehwinkel zeigen. Theoretischen Physikern der TU Dresden um Dr. Jens Kunstmann und der Columbia University um Prof. Dr. David Reichman gelang es mit Hilfe von aufwendigen Berechnungen zu zeigen, dass sich durch diese Beobachtung Rückschlüsse auf das Verhalten von Elektronen und Löchern in den jeweiligen Einzelschichten ziehen lassen. So wandert das Elektron zwar in das MoS2, das Loch hält sich jedoch in beiden Materialien auf und nicht nur, wie bisher angenommen, im WSe2.

Diese neuen Einsichten sind entscheidend für die Kontrolle optischer Effekte in den neuartigen zweidimensionalen Kristallen und für das Verständnis zukünftiger Technologie wie ultradünner Solarzellen.

Die Ergebnisse wurden in der Fachzeitschrift „Nature Physics“ veröffentlicht:
J. Kunstmann, F. Mooshammer, P. Nagler, A. Chaves, F. Stein, N. Paradiso, G. Plechinger, C. Strunk, C. Schüller, G. Seifert, D. R. Reichman, T. Korn, Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures, Nature Physics (2018) doi.org/10.1038/s41567-018-0123-y

Ansprechpartner für Medienvertreter:
Dr. Tobias Korn
Institut für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: 0941 943-2055
E-Mail: tobias.korn@physik.uni-regensburg.de

Christina Glaser | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Das große Aufräumen nach dem Stress

25.05.2018 | Biowissenschaften Chemie

APEX wirft einen Blick ins Herz der Finsternis

25.05.2018 | Physik Astronomie

Weltneuheit im Live-Chat erleben

25.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics