Physiker gewinnen neue Erkenntnisse zur Informationsspeicherung in Quantensystemen

Das Atom, das mit Licht angeregt wird, gelangt in einen quantenmechanischen Überlagerungszustand, nimmt also zwei Zustände gleichzeitig ein. Gibt es seine Anregung in Form eines Lichtteilchens wieder ab, entstehen so genannte Schwebungen. Deren Kontrolle ist Voraussetzung für eine zuverlässige Informationsspeicherung. Ihre Erkenntnisse haben die Physiker in der Fachzeitschrift „Physical Review A“ veröffentlicht und eine „Editor’s suggestion“ erhalten. Diese Empfehlung erhalten nur die einflussreichsten Artikel.

In der Zukunft werden Daten mit hoher Wahrscheinlichkeit in einzelnen Teilchen – Atomen, Elektronen – gespeichert und mit einzelnen Lichtteilchen – Photonen – übertragen. Die Grundlagen dieser Art der Datenspeicherung erforschen Physiker der Arbeitsgruppe Quanten-Photonik um Jürgen Eschner, Professor für Experimentalphysik an der Saar-Uni. Ihnen ist es in einer wegweisenden Arbeit nun gelungen herauszufinden, wie das Abspeichern von Informationen mit einem einzelnen Atom und einem einzelnen Photon möglichst gut gelingen kann.

Michael Schug (Erstautor), Christoph Kurz und Pascal Eich sowie weitere Experimentalphysiker der Saar-Uni haben in einem Versuch ein einzelnes Kalziumatom mit Licht angeregt, so dass es zwei energetisch höhere Zustände gleichzeitig einnimmt. Das Elektron gelangt also in einen quantenmechanischen Überlagerungszustand, in welchem Information gespeichert ist. Im weiteren Verlauf des Experiments zerfallen die Zustände und geben ein Lichtteilchen als Welle wieder ab.

Weil aber die beiden Wellen aus dem Überlagerungszustand in minimal unterschiedlichen Frequenzen schwingen, erzeugen sie eine Schwebung, die die Physiker Quantenschwebung nennen. „Diese Differenz zwischen den einzelnen Frequenzen messen wir“, erklärt Michael Schug. „Vergleichbar ist das mit einer Stimmgabel: Tippe ich zwei Stimmgabeln gleichzeitig an, schwingt die eine mit 400 Hertz, die andere vielleicht mit 405 Hertz. Da hören wir in den einzelnen Tönen keinen Unterschied.

Die Differenz beträgt jedoch nur fünf Hertz, so dass sich beide Frequenzen fünfmal pro Sekunde überlagern. Diese Überlagerung heißt nichts anderes, als dass der Ton fünfmal in der Sekunde lauter und wieder leiser zu hören ist. Genau diese langsame Differenz messen wir nun beim Zerfall der Zustände, die mit Licht angeregt wurden“, erklärt Christoph Kurz die Arbeit.

In dem neuen Experiment konnte nun gezeigt werden, dass es zwei unterschiedliche Mechanismen für Quantenschwebungen gibt, die entweder durch die Lichtanregung oder durch den Zerfall zustande kommen können. Den Physikern ist gelungen, diese Mechanismen zu identifizieren und zu kontrollieren. Diese Kontrolle wiederum ist Voraussetzung dafür, die im Überlagerungszustand gespeicherte Information zuverlässig wieder zurückzugewinnen und sie mit dem Lichtteilchen an ein anderes Quantensystem zu übertragen. Diese Erkenntnisse sind grundlegend für die Entwicklung künftiger Informationstechnologien, die auf den Prinzipien der Quantenphysik beruhen.

Den Aufsatz „Quantum interference in the absorption and emission of single photons by a single ion” finden Sie hier: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.023829.

Weitere Informationen:
Michael Schug
Tel.: (0681) 30270378
E-Mail: schug@physik.uni-saarland.de

Christian Kurz
Tel.: (0681) 30270378
E-Mail: c.kurz@physik.uni-saarland.de

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.023829

Media Contact

Thorsten Mohr Universität des Saarlandes

Weitere Informationen:

http://www.uni-saarland.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. • Dauerhafte unterirdische Lagerung von CO2 • Poren so klein wie Bakterien • Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile…

Transparente emissive Mikrodisplays

… für ultraleichte und kompakte Augmented-Reality-Systeme. Im Rahmen des Projektes HOT („Hochperformante transparente und biegbare Mikro-Elektronik für photonische und optische Anwendungen“) haben Forschende des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS ein…

Mikroplastik im Meer: Neue Methode

Mikroplastik im Meer könnte größtenteils auch aus Beschichtungen sowie Farbanstrichen von Schiffen und Bauwerken im Meer stammen. Daten dazu gibt es allerdings kaum. Das Helmholtz-Zentrum Hereon und das Bundesamt für…

Partner & Förderer