Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker filmen und manipulieren Bewegung von Bismut-Atomen

10.02.2014
Mit Hilfe eines Tricks ist es Physikern aus Kassel und Japan gelungen, die Bewegung von Atomen in Bismut quasi zu filmen und zu manipulieren – ein Zwischenschritt zur Entwicklung ultraschneller Schalter auf atomarer Skala.

Seit langem träumen Wissenschaftlerinnen und Wissenschaftler davon, die Bewegung von Atomen in Materialien in Echtzeit mit Hilfe von Licht zu visualisieren und zu kontrollieren.

Wäre man in der Lage, gezielt die Atome eines Materials in bestimmte vorprogrammierte Richtungen zu verschieben, so könnte man ultraschnelle Schalter auf atomarer Skala herstellen.

Um die Bewegung der Atome zu kontrollieren, muss man sie jedoch visualisieren können: Erst wenn man versteht, wohin sich Teilchen bei Laser-Bestrahlung bewegen, kann man diese Bewegung zu seinen Zwecken einsetzen. Nur: Keine Kamera kann dies leisten.

Atome sind eine Milliarde mal schneller, als die schnellste kommerzielle Kamera der Welt aufzeichnen kann, und so klein, dass eine Auflösung von 100 Billiarden Megapixeln notwendig wäre, um ihre Bewegung beobachten zu können. Prof. Dr. Martin Garcia, Leiter des Fachgebiets Festkörper und Ultrakurzzeitphysik an der Universität Kassel, und Dr. Eeuwe Zijlstra, Wissenschaftlicher Mitarbeiter am Fachgebiet, haben es dennoch geschafft: mit einem Trick.

„Tür zur Lichtmanipulation von Atomen in Festkörpern ist jetzt offen“
Mit Hilfe von extrem kurzen Lichtpulsen nämlich ist es neuerdings möglich, zeitaufgelöst zu beobachten, wie Materialien nach Laseranregung Licht anders reflektieren: Durch die Anregung werden die Atome in schnelle Schwingungen versetzt, die dazu führen, dass das Licht im Laufe der Zeit vom Material anders zurückgeworfen wird.

Die Reflektivität des Materials schwingt mit den Atomen mit. Anders ausgedrückt: Wer weiß, wie genau sich die Reflektivität während des Schwingens ändert, kann von den Lichtsignalen darauf zurückschließen, wo sich die Atome zu einem bestimmten Zeitpunkt aufhalten – und damit auf ihre Bewegung. Die Kasseler Physiker Garcia und Zijlstra haben eine Theorie entwickelt, mit der sich die Bewegung der Atome aus dem Reflexionsvermögen bestimmen lässt.

Damit lieferten sie den fehlenden Baustein, um Atom-Bewegungen zweidimensional zu visualisieren und zu kontrollieren. „Wir haben auf diesem Weg feststellen können, wo sich die Atome aufhalten - und zwar alle Atome im Material, nicht weniger als 10 hoch 23“, betont Garcia. „Die Tür zur Lichtmanipulation von Atomen in Festkörpern steht jetzt offen.“

In Zusammenarbeit mit japanischen Kollegen unter der Leitung von Prof. Dr. Kenji Ohmori (Institute for Molecular Science, Okazaki), Prof. Dr. Katzutaka Nakamura (Tokyo Institute of Technology) und Prof. Dr. Masahiro Kitajima (Nara Institute of Science and Technology) ist es Garcia und Zijlstra gelungen, die zweidimensionale Bewegung der Atome im Element Bismut nach ultrakurzer Laserbestrahlung zu visualisieren und zu steuern.

Mehr noch: Jetzt, da die Bewegungen berechenbar waren, konnten die japanischen Wissenschaftler die planaren Schwingungen der Bismut-Atome durch gezielte Umformung von Lichtimpulsen beliebig manipulieren und die Bewegung dabei, mit Hilfe der Theorie von Prof. Dr. Garcia und Dr. Zijlstra, visuell darstellen. Garcia verdeutlicht die Dimensionen durch einen Vergleich: „Nehmen wir an, jemand könnte es erreichen, dass alle Einwohner Hessens eine Stunde lang genau dieselbe Bewegung durchführen, zum Beispiel sich im Kreis zu drehen. In etwa das ist uns mit Atomen gelungen – nur, dass die Zahl der Einwohner Hessens verschwindend klein ist im Vergleich zur Anzahl der Atome in einem Material.“

Die Ergebnisse dieser Kasseler-japanischen Arbeit wurden in der renommierten Fachzeitschrift „Nature Communications“ veröffentlicht.

Link zum Artikel: www.nature.com/ncomms/2013/131118/ncomms3801/full/ncomms3801.html

Bild von Prof. Dr. Martin Garcia (Bild: Uni Kassel) unter:
www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2014/Garcia.JPG
Bild von Dr. Eeuwe Zijlstra (Bild: privat) unter:
www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2014/Zijlstra_neu.jpg
Kontakt:
Prof. Dr. Martin Garcia
Universität Kassel
FB 10 - Mathematik und Naturwissenschaften
Institut für Physik
Fachgebiet Festkörper und Ultrakurzzeitphysik
Tel.: +49 561 804 4480
E-Mail: garcia@physik.uni-kassel.de

Andrea Haferburg | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

nachricht Neue Erscheinungsform magnetischer Monopole entdeckt
08.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie