Physiker entwickeln neue Technologie für Quantencomputer: Quantencomputer aus Kohlenstoff-Nanoröhre

Wie eine Gitarrensaite können Nanoroehrchen (schwarz) eingespannt und zu Schwingungen angeregt werden. Ein elektrisches Feld (Elektroden: blau) sorgt dafür, das nur zwei der vielen möglichen Zustände angesteuert werden.<br>Bild: M.J. Hartmann, TUM<br>

Eine Studie von Physikern der Technischen Universität München (TUM) belegt, dass Nanoröhren Information in Form mechanischer Schwingungen speichern können. Bisher experimentierten Forscher vor allem mit elektrisch geladenen Teilchen. Für nanomechanische Bausteine spricht, dass sie ungeladen sind und daher wesentlich unempfindlicher gegenüber elektrischen Störungen wären.

Computer, die quantenmechanische Phänomene geschickt nutzen, könnten wesentlich leistungsfähiger sein als klassische, digital arbeitende Rechner. Wissenschaftler auf der ganzen Welt erforschen die Grundlagen dazu. Ein häufig genutztes System sind elektrisch geladene Teilchen, die in einer „elektromagnetischen Falle“ festgehalten werden.

Ein Nachteil dieser Systeme ist, dass sie sehr empfindlich auf elektromagnetische Störungen reagieren und daher aufwändig abgeschirmt werden müssen. Physiker der TU München haben nun einen Weg gefunden, wie Information auch in mechanischen Schwingungen gespeichert und quantenmechanisch verarbeitet werden kann.

Eine Nano-Gitarre

Wird ein Kohlenstoff-Nanoröhrchen an beiden Enden fest eingespannt und zu Schwingungen angeregt wie eine Gitarrensaite, schwingt es erstaunlich lange. „Man würde erwarten, dass ein solches System sehr stark gedämpft ist und die Schwingung schnell abklingt“, sagt Simon Rips Erstautor der Arbeit. „Tatsächlich aber schwingt die Saite über eine Million Mal. Die Information bleibt damit bis zu einer Sekunde erhalten. Das ist lange genug, um damit arbeiten zu können.“

Da eine solche Saite zwischen vielen physikalisch gleichwertigen Zuständen hin und her schwingt, griffen die Physiker zu einem Trick: Ein elektrisches Feld in der Nähe des Nanoröhrchens sorgt dafür, dass nur zwei dieser Zustände angesteuert werden. Die Informationen können dann optoelektronisch geschrieben und gelesen werden. „Unser Konzept basiert auf verfügbarer Technik“, sagt Michael Hartmann, Leiter der Emmy Noether-Forschungsgruppe Quantenoptik und Quantendynamik an der TU München. „Es könnte uns der Realisierung eines Quantencomputers wieder ein Stück näher bringen“.

Die Forschungsarbeiten wurden unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Emmy Noether-Programms und des SFB 631.

Publication:

Quantum Information Processing with Nanomechanical Qubits
Simon Rips and Michael J. Hartmann,
Physical Review Letters, online, 21. März 2013 DOI:
Link: http://prl.aps.org/accepted/9307fY9fLe21d93fa31c42b4d315fecd8d8b5187e
Kontakt:
Dr. Michael J. Hartmann
Technische Universität München
Physik-Department, Emmy Noether research group
“Quantum Optics and Quantum Dynamics” (T 34)
85747 Garching, Germany
Tel.: +49 89 289 12884;
E-Mail: mh@tum.de

Media Contact

Dr. Ulrich Marsch Technische Universität München

Weitere Informationen:

http://www.ph.tum.de/quantumdynamics

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer