Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker entwickeln neuartige Lichtquelle

23.01.2012
Winzige Bauelemente, die einzelne Lichtteilchen abgeben können, sind für verschiedene technische Neuerungen wichtig. Bei der Herstellung solcher Strukturen ist Physikern von den Universitäten Würzburg, Stuttgart und Ulm ein entscheidender Fortschritt gelungen.

Warum strebt die Forschung nach Lichtquellen, die einzelne Lichtteilchen abgeben können? „Solche Quellen sind eine Grundvoraussetzung für neue Technologien zur Datenverschlüsselung“, erklärt Professor Jens Pflaum vom Physikalischen Institut der Uni Würzburg.


Das neuartige Bauteil, mit dem sich bei Raumtemperatur einzelne Photonen (roter Pfeil) erzeugen lassen, ist unten schematisch gezeigt und oben im Betrieb. Durch die kreisförmigen Kontakte fließt Strom, der die darunterliegenden Farbstoffmoleküle zum Leuchten anregt. Der optisch aktive Bauteilbereich beträgt circa zwei Millimeter im Durchmesser. Foto: Benedikt Stender


Chemische Struktur des Iridium-basierten Moleküls, das die Wissenschaftler zur Erzeugung einzelner Photonen eingesetzt haben. Bild: Physikalisches Institut Uni Würzburg

Entsprechend ausgestattete Bauteile würden es möglich machen, dass sich Daten bei ihrer Übertragung nicht mehr unbemerkt „fischen“ lassen. Zum Beispiel könnten dadurch Online-Bezahlsysteme noch sicherer werden – weil eine Manipulation sofort auffiele und schnelle Gegenmaßnahmen möglich wären. Mit herkömmlichen Lichtquellen wie Lasern sei das nicht zu erreichen, denn sie geben stets sehr große Mengen von identischen Lichtteilchen oder Photonen ab, wie es in der Fachsprache der Physiker heißt.

Vorteile der neuartigen Lichtquelle

Eine innovatives Bauelement, das einzelne Photonen ausschickt, stellen Pflaum und seine Kooperationspartner aus Stuttgart und Ulm jetzt in der Top-Zeitschrift „Nature Communications“ vor. Die neuartige Lichtquelle hat gleich mehrere Vorteile: Sie besteht aus Standardmaterialien für organische Leuchtdioden, ist relativ einfach herzustellen und lässt sich elektrisch betreiben. Das Wichtigste: Sie funktioniert bei Raumtemperatur. Denn vergleichbare optische Bauelemente aus Halbleitermaterialien, wie etwa aus Galliumarsenid, können bislang nur bei Temperaturen weit unter dem Gefrierpunkt betrieben werden.

Einzelne Farbmoleküle in einer Matrix

Wie das neue Bauteil konstruiert ist? „Im Prinzip ähnlich wie der Pixel eines Displays, das jeder von seinem Handy kennt“, erklärt Pflaum: Auf ein Trägermaterial – in diesem Fall ein Glasplättchen – wird eine elektrisch leitfähige Schicht aufgebracht. Darauf kommt eine Matrix aus organischem Kunststoff, in die einzelne Moleküle eines Farbstoffs eingebettet sind. Auf der Matrix wiederum werden elektrische Kontakte angebracht. Schließt man diese an eine Batterie an, fließt Strom zu den Farbstoffmolekülen und regt diese dazu an, beständig einzelne Lichtteilchen abzufeuern. Das haben die Physiker mit Photonenkorrelationsmessungen nachgewiesen.

Drei entscheidende Kniffe angewendet

Für diesen Fortschritt waren drei Kniffe entscheidend. Nummer eins: „Wir haben die richtigen Farbstoffmoleküle gewählt“, sagt Maximilian Nothaft von der Universität Stuttgart. Es handelt sich dabei um chemische Strukturen, bei denen jeweils drei organische Komplexe um ein Iridium-Atom gruppiert sind.

Kniff Nummer zwei: Die Physiker haben für die richtige Verteilung der Farbstoffmoleküle in der Matrix gesorgt. Lägen die Moleküle zu eng beieinander, würden sie sich gegenseitig beeinflussen und keine einzelnen unabhängigen Photonen abgeben.

Kniff Nummer drei: „Wir haben die Grenzfläche zwischen den elektrischen Kontakten und der Matrix gut gestaltet“, erklärt Professor Jörg Wrachtrup von der Universität Stuttgart. Das sei wichtig, damit die erforderlichen Elektronen, die Träger der elektrischen Ladung, überhaupt in die Polymermatrix injiziert werden können. In diesem Fall hatten die Wissenschaftler mit einem Kontakt aus einer Doppelschicht Aluminium und Barium Erfolg.

Blick in die Zukunft

Was die Physiker als nächstes planen? „Wir werden versuchen, die Matrix mit den Farbmolekülen und den elektrischen Kontakten auf verschiedene Trägermaterialien aufzubringen, um dadurch auch flexible Unterlagen wie etwa Folien einsetzen zu können“, so Professor Pflaum. Gelingen dürfte das mit einer Apparatur, die ähnlich wie ein Tintenstrahldrucker arbeitet und die seit Jahren standardmäßig in den Labors zum Einsatz kommt. Ein Vorteil dabei: Die Lichtquellen könnten noch besser auf einer Oberfläche positioniert werden.

Arbeiten von der DFG gefördert

Geglückt ist dieser Erfolg unter dem Dach der Forschergruppe 730 („Positioning of single nanostructures – Single quantum devices“), die von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird. Sprecher der Gruppe ist Professor Peter Michler von der Universität Stuttgart.

„Electrically driven photon antibunching from a single molecule at room temperature”, Maximilian Nothaft, Steffen Höhla, Fedor Jelezko, Norbert Frühauf, Jens Pflaum & Jörg Wrachtrup, Nature Communications 3 (628), 17. Januar 2012, doi:10.1038/ncomms1637

Kontakt

Prof. Dr. Jens Pflaum, Physikalisches Institut der Universität Würzburg,
T (0931) 31-83118, jpflaum@physik.uni-wuerzburg.de

Maximilian Nothaft und Prof. Dr. Jörg Wrachtrup, 3. Physikalisches Institut der Universität Stuttgart, T (0711) 685-65273, m.nothaft@physik.uni-stuttgart.de

Robert Emmerich | Julius-Maximilians-Universität W
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte