Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker entwickeln neuartige Lichtquelle

23.01.2012
Winzige Bauelemente, die einzelne Lichtteilchen abgeben können, sind für verschiedene technische Neuerungen wichtig. Bei der Herstellung solcher Strukturen ist Physikern von den Universitäten Würzburg, Stuttgart und Ulm ein entscheidender Fortschritt gelungen.

Warum strebt die Forschung nach Lichtquellen, die einzelne Lichtteilchen abgeben können? „Solche Quellen sind eine Grundvoraussetzung für neue Technologien zur Datenverschlüsselung“, erklärt Professor Jens Pflaum vom Physikalischen Institut der Uni Würzburg.


Das neuartige Bauteil, mit dem sich bei Raumtemperatur einzelne Photonen (roter Pfeil) erzeugen lassen, ist unten schematisch gezeigt und oben im Betrieb. Durch die kreisförmigen Kontakte fließt Strom, der die darunterliegenden Farbstoffmoleküle zum Leuchten anregt. Der optisch aktive Bauteilbereich beträgt circa zwei Millimeter im Durchmesser. Foto: Benedikt Stender


Chemische Struktur des Iridium-basierten Moleküls, das die Wissenschaftler zur Erzeugung einzelner Photonen eingesetzt haben. Bild: Physikalisches Institut Uni Würzburg

Entsprechend ausgestattete Bauteile würden es möglich machen, dass sich Daten bei ihrer Übertragung nicht mehr unbemerkt „fischen“ lassen. Zum Beispiel könnten dadurch Online-Bezahlsysteme noch sicherer werden – weil eine Manipulation sofort auffiele und schnelle Gegenmaßnahmen möglich wären. Mit herkömmlichen Lichtquellen wie Lasern sei das nicht zu erreichen, denn sie geben stets sehr große Mengen von identischen Lichtteilchen oder Photonen ab, wie es in der Fachsprache der Physiker heißt.

Vorteile der neuartigen Lichtquelle

Eine innovatives Bauelement, das einzelne Photonen ausschickt, stellen Pflaum und seine Kooperationspartner aus Stuttgart und Ulm jetzt in der Top-Zeitschrift „Nature Communications“ vor. Die neuartige Lichtquelle hat gleich mehrere Vorteile: Sie besteht aus Standardmaterialien für organische Leuchtdioden, ist relativ einfach herzustellen und lässt sich elektrisch betreiben. Das Wichtigste: Sie funktioniert bei Raumtemperatur. Denn vergleichbare optische Bauelemente aus Halbleitermaterialien, wie etwa aus Galliumarsenid, können bislang nur bei Temperaturen weit unter dem Gefrierpunkt betrieben werden.

Einzelne Farbmoleküle in einer Matrix

Wie das neue Bauteil konstruiert ist? „Im Prinzip ähnlich wie der Pixel eines Displays, das jeder von seinem Handy kennt“, erklärt Pflaum: Auf ein Trägermaterial – in diesem Fall ein Glasplättchen – wird eine elektrisch leitfähige Schicht aufgebracht. Darauf kommt eine Matrix aus organischem Kunststoff, in die einzelne Moleküle eines Farbstoffs eingebettet sind. Auf der Matrix wiederum werden elektrische Kontakte angebracht. Schließt man diese an eine Batterie an, fließt Strom zu den Farbstoffmolekülen und regt diese dazu an, beständig einzelne Lichtteilchen abzufeuern. Das haben die Physiker mit Photonenkorrelationsmessungen nachgewiesen.

Drei entscheidende Kniffe angewendet

Für diesen Fortschritt waren drei Kniffe entscheidend. Nummer eins: „Wir haben die richtigen Farbstoffmoleküle gewählt“, sagt Maximilian Nothaft von der Universität Stuttgart. Es handelt sich dabei um chemische Strukturen, bei denen jeweils drei organische Komplexe um ein Iridium-Atom gruppiert sind.

Kniff Nummer zwei: Die Physiker haben für die richtige Verteilung der Farbstoffmoleküle in der Matrix gesorgt. Lägen die Moleküle zu eng beieinander, würden sie sich gegenseitig beeinflussen und keine einzelnen unabhängigen Photonen abgeben.

Kniff Nummer drei: „Wir haben die Grenzfläche zwischen den elektrischen Kontakten und der Matrix gut gestaltet“, erklärt Professor Jörg Wrachtrup von der Universität Stuttgart. Das sei wichtig, damit die erforderlichen Elektronen, die Träger der elektrischen Ladung, überhaupt in die Polymermatrix injiziert werden können. In diesem Fall hatten die Wissenschaftler mit einem Kontakt aus einer Doppelschicht Aluminium und Barium Erfolg.

Blick in die Zukunft

Was die Physiker als nächstes planen? „Wir werden versuchen, die Matrix mit den Farbmolekülen und den elektrischen Kontakten auf verschiedene Trägermaterialien aufzubringen, um dadurch auch flexible Unterlagen wie etwa Folien einsetzen zu können“, so Professor Pflaum. Gelingen dürfte das mit einer Apparatur, die ähnlich wie ein Tintenstrahldrucker arbeitet und die seit Jahren standardmäßig in den Labors zum Einsatz kommt. Ein Vorteil dabei: Die Lichtquellen könnten noch besser auf einer Oberfläche positioniert werden.

Arbeiten von der DFG gefördert

Geglückt ist dieser Erfolg unter dem Dach der Forschergruppe 730 („Positioning of single nanostructures – Single quantum devices“), die von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird. Sprecher der Gruppe ist Professor Peter Michler von der Universität Stuttgart.

„Electrically driven photon antibunching from a single molecule at room temperature”, Maximilian Nothaft, Steffen Höhla, Fedor Jelezko, Norbert Frühauf, Jens Pflaum & Jörg Wrachtrup, Nature Communications 3 (628), 17. Januar 2012, doi:10.1038/ncomms1637

Kontakt

Prof. Dr. Jens Pflaum, Physikalisches Institut der Universität Würzburg,
T (0931) 31-83118, jpflaum@physik.uni-wuerzburg.de

Maximilian Nothaft und Prof. Dr. Jörg Wrachtrup, 3. Physikalisches Institut der Universität Stuttgart, T (0711) 685-65273, m.nothaft@physik.uni-stuttgart.de

Robert Emmerich | Julius-Maximilians-Universität W
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops