Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker entwickeln neuartige Lichtquelle

23.01.2012
Winzige Bauelemente, die einzelne Lichtteilchen abgeben können, sind für verschiedene technische Neuerungen wichtig. Bei der Herstellung solcher Strukturen ist Physikern von den Universitäten Würzburg, Stuttgart und Ulm ein entscheidender Fortschritt gelungen.

Warum strebt die Forschung nach Lichtquellen, die einzelne Lichtteilchen abgeben können? „Solche Quellen sind eine Grundvoraussetzung für neue Technologien zur Datenverschlüsselung“, erklärt Professor Jens Pflaum vom Physikalischen Institut der Uni Würzburg.


Das neuartige Bauteil, mit dem sich bei Raumtemperatur einzelne Photonen (roter Pfeil) erzeugen lassen, ist unten schematisch gezeigt und oben im Betrieb. Durch die kreisförmigen Kontakte fließt Strom, der die darunterliegenden Farbstoffmoleküle zum Leuchten anregt. Der optisch aktive Bauteilbereich beträgt circa zwei Millimeter im Durchmesser. Foto: Benedikt Stender


Chemische Struktur des Iridium-basierten Moleküls, das die Wissenschaftler zur Erzeugung einzelner Photonen eingesetzt haben. Bild: Physikalisches Institut Uni Würzburg

Entsprechend ausgestattete Bauteile würden es möglich machen, dass sich Daten bei ihrer Übertragung nicht mehr unbemerkt „fischen“ lassen. Zum Beispiel könnten dadurch Online-Bezahlsysteme noch sicherer werden – weil eine Manipulation sofort auffiele und schnelle Gegenmaßnahmen möglich wären. Mit herkömmlichen Lichtquellen wie Lasern sei das nicht zu erreichen, denn sie geben stets sehr große Mengen von identischen Lichtteilchen oder Photonen ab, wie es in der Fachsprache der Physiker heißt.

Vorteile der neuartigen Lichtquelle

Eine innovatives Bauelement, das einzelne Photonen ausschickt, stellen Pflaum und seine Kooperationspartner aus Stuttgart und Ulm jetzt in der Top-Zeitschrift „Nature Communications“ vor. Die neuartige Lichtquelle hat gleich mehrere Vorteile: Sie besteht aus Standardmaterialien für organische Leuchtdioden, ist relativ einfach herzustellen und lässt sich elektrisch betreiben. Das Wichtigste: Sie funktioniert bei Raumtemperatur. Denn vergleichbare optische Bauelemente aus Halbleitermaterialien, wie etwa aus Galliumarsenid, können bislang nur bei Temperaturen weit unter dem Gefrierpunkt betrieben werden.

Einzelne Farbmoleküle in einer Matrix

Wie das neue Bauteil konstruiert ist? „Im Prinzip ähnlich wie der Pixel eines Displays, das jeder von seinem Handy kennt“, erklärt Pflaum: Auf ein Trägermaterial – in diesem Fall ein Glasplättchen – wird eine elektrisch leitfähige Schicht aufgebracht. Darauf kommt eine Matrix aus organischem Kunststoff, in die einzelne Moleküle eines Farbstoffs eingebettet sind. Auf der Matrix wiederum werden elektrische Kontakte angebracht. Schließt man diese an eine Batterie an, fließt Strom zu den Farbstoffmolekülen und regt diese dazu an, beständig einzelne Lichtteilchen abzufeuern. Das haben die Physiker mit Photonenkorrelationsmessungen nachgewiesen.

Drei entscheidende Kniffe angewendet

Für diesen Fortschritt waren drei Kniffe entscheidend. Nummer eins: „Wir haben die richtigen Farbstoffmoleküle gewählt“, sagt Maximilian Nothaft von der Universität Stuttgart. Es handelt sich dabei um chemische Strukturen, bei denen jeweils drei organische Komplexe um ein Iridium-Atom gruppiert sind.

Kniff Nummer zwei: Die Physiker haben für die richtige Verteilung der Farbstoffmoleküle in der Matrix gesorgt. Lägen die Moleküle zu eng beieinander, würden sie sich gegenseitig beeinflussen und keine einzelnen unabhängigen Photonen abgeben.

Kniff Nummer drei: „Wir haben die Grenzfläche zwischen den elektrischen Kontakten und der Matrix gut gestaltet“, erklärt Professor Jörg Wrachtrup von der Universität Stuttgart. Das sei wichtig, damit die erforderlichen Elektronen, die Träger der elektrischen Ladung, überhaupt in die Polymermatrix injiziert werden können. In diesem Fall hatten die Wissenschaftler mit einem Kontakt aus einer Doppelschicht Aluminium und Barium Erfolg.

Blick in die Zukunft

Was die Physiker als nächstes planen? „Wir werden versuchen, die Matrix mit den Farbmolekülen und den elektrischen Kontakten auf verschiedene Trägermaterialien aufzubringen, um dadurch auch flexible Unterlagen wie etwa Folien einsetzen zu können“, so Professor Pflaum. Gelingen dürfte das mit einer Apparatur, die ähnlich wie ein Tintenstrahldrucker arbeitet und die seit Jahren standardmäßig in den Labors zum Einsatz kommt. Ein Vorteil dabei: Die Lichtquellen könnten noch besser auf einer Oberfläche positioniert werden.

Arbeiten von der DFG gefördert

Geglückt ist dieser Erfolg unter dem Dach der Forschergruppe 730 („Positioning of single nanostructures – Single quantum devices“), die von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird. Sprecher der Gruppe ist Professor Peter Michler von der Universität Stuttgart.

„Electrically driven photon antibunching from a single molecule at room temperature”, Maximilian Nothaft, Steffen Höhla, Fedor Jelezko, Norbert Frühauf, Jens Pflaum & Jörg Wrachtrup, Nature Communications 3 (628), 17. Januar 2012, doi:10.1038/ncomms1637

Kontakt

Prof. Dr. Jens Pflaum, Physikalisches Institut der Universität Würzburg,
T (0931) 31-83118, jpflaum@physik.uni-wuerzburg.de

Maximilian Nothaft und Prof. Dr. Jörg Wrachtrup, 3. Physikalisches Institut der Universität Stuttgart, T (0711) 685-65273, m.nothaft@physik.uni-stuttgart.de

Robert Emmerich | Julius-Maximilians-Universität W
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau