Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker machen Elektronengas sichtbar

02.07.2009
Mit Röntgenstrahlung lassen sich verborgene Strukturen sichtbar machen, etwa die Knochen des Menschen. Würzburger Physiker haben mit ihr jetzt erstmals auch die elektronische Struktur einer Grenzschicht in einem Festkörper aufgeklärt.

Weshalb solche Grenzschichten erforscht werden? "Sie sind wichtig für die Funktionalitäten von modernen elektronischen Bauelementen wie Transistoren", sagt Michael Sing, Mitarbeiter am Lehrstuhl für Experimentelle Physik IV der Universität Würzburg. Wer solche Bauelemente verbessern oder neu entwickeln will, sollte darum die Eigenschaften von Grenzschichten sehr gut kennen.

Eine ganz spezielle Grenzschicht haben die Würzburger Physiker mit Kollegen von der Universität Augsburg und vom Schweizer Paul-Scherrer-Institut analysiert: Auf eine Unterlage aus Strontiumtitanat brachten sie hauchdünn wenige Schichten Lanthanaluminat auf. Sie interessierten sich für den Bereich, in dem die beiden Materialien aufeinandertreffen.

Warum gerade diese Materialien? Beide sind gute Isolatoren, leiten aber trotzdem elektrischen Strom, wenn man sie zusammenbringt. "An der Grenze zwischen ihnen bildet sich eine leitfähige Schicht, ein so genanntes Elektronengas, das bei sehr tiefen Temperaturen sogar supraleitend wird, den elektrischen Strom dann also verlustfrei transportiert", erklärt Michael Sing. Zudem lässt sich die Leitfähigkeit der Schicht an- und abschalten. Das mache die Materialien für zukünftige Anwendungen sehr interessant.

Elektronengas: Dichte und Dicke gemessen

Nachgewiesen wurde die leitfähige Schicht zwischen den beiden Materialien schon im Jahr 2004. Nun aber haben die Wissenschaftler erstmals mit hoher Präzision ihre Dichte und ihre Dicke bestimmt - beides sind entscheidende Kenngrößen für die elektronischen Eigenschaften leitfähiger Schichten.

Ergebnis: Die leitfähigen Elektronen kommen nur in einer einzigen Lage von Strontiumtitanat vor, und zwar direkt an der inneren Grenzfläche zum Aluminat. "Mit dieser Struktur ist es in Zukunft vielleicht möglich, Bauelemente wie zum Beispiel Computerchips noch weiter zu verkleinern, weil die elektrisch leitfähige Schicht so schlank ist - sie besteht ja nur aus einer Atomlage", sagt Michael Sing.

Perspektive: Bauteile für aggressive Umgebungen

Außerdem eignen sich die beiden Materialien womöglich als Alternative zum Silizium, dem derzeit wichtigsten Ausgangsmaterial für die Halbleiterindustrie. Denn Bauelemente auf Silizium-Basis haben den Würzburger Physikern zufolge Nachteile: Bei Temperaturen über 200 Grad Celsius und auch bei Temperaturen unter dem Gefrierpunkt funktionieren sie nicht einwandfrei.

Anders sehe das bei so genannten Oxid-Keramiken aus - zu dieser Materialgruppe gehören auch Lanthanaluminat und Strontiumtitanat. Oxid-Keramiken können laut Michael Sing durchaus auch in aggressiven Umgebungen eingesetzt werden, etwa in Müllverbrennungsanlagen oder im Weltraum. An Orten also, an denen entweder sehr hohe oder sehr tiefe Temperaturen herrschen.

Nächstes Ziel: Funktionierendes Bauelement analysieren

Nächstes Ziel der Würzburger Physiker ist es, die elektrisch leitfähige Grenzschicht in einem funktionierenden Bauelement zu analysieren. Dafür wollen sie einen Feldeffekttransistor aus Lanthanaluminat und Strontiumtitanat verwenden. Von den Experimenten erhoffen sie sich noch mehr Wissen über die Vorgänge, die beim Schalten eines Stromes in einer solchen Schichtstruktur ablaufen.

Die Messmethode

Ihre Experimente beschreiben die Forscher im Fachblatt Physical Review Letters. Sie haben eine moderne Variante der so genannten röntgeninduzierten Photoemissions-Spektroskopie eingesetzt. Die Methode beruht auf dem schon lange bekannten Photoeffekt: Elektronen absorbieren Röntgenstrahlung, nehmen dadurch viel Energie auf und werden beschleunigt. Wegen ihrer großen Geschwindigkeit sind sie nun dazu in der Lage, in einem Festkörper etliche Atomschichten zu durchdringen und ihn durch seine Oberfläche hindurch zu verlassen.

Dort werden die schnellen Elektronen dann nachgewiesen, ihre Geschwindigkeiten gemessen. Das lässt Rückschlüsse darüber zu, von welchem Atomtyp sie stammen und in welchem Ladungszustand sich die Atome befinden. "Variiert man die eingestrahlte Röntgenenergie und damit das Ausmaß, in dem die Elektronen aus dem Festkörper austreten, kann man ein elektronisches und chemisches Tiefenprofil erstellen und daraus ein Abbild der untersuchten Struktur rekonstruieren", erklärt Michael Sing.

Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures by hard X-ray photoelectron spectroscopy, M. Sing, G. Berner, K. Goß, A. Müller, A. Ruff, A. Wetscherek, S. Thiel, J. Mannhart, S.A. Pauli, C.W. Schneider, P.R. Willmott, M. Gorgoi, F. Schäfers und R. Claessen, Physical Review Letters 102, 176805 (2009), doi 10.1103/PhysRevLett.102.176805

Kontakt
Prof. Dr. Ralph Claessen,
T (0931) 31-85732,
claessen@physik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie