Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker designen ultrascharfe Pulse

27.07.2017

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung auf sehr kleine räumliche und zeitliche Dimensionen zu fokussieren. Ingenieure bedienen sich dazu unterschiedlicher Methoden.


Mit diesem Aufbau lassen sich beliebig stark fokussierte Pulse erzeugen.

IQOQI Innsbruck


Je mehr Schwingungsmoden angeregt werden, desto stärker werden die Felder fokussiert.

IQOQI Innsbruck

Eine Gruppe um den Physiker Oriol Romero-Isart vom Institut für Quantenoptik und Quanteninformation (IQOQI) und dem Institut für Theoretische Physik der Universität Innsbruck präsentiert nun gemeinsam mit Ignacio Cirac und Theodor Hänsch vom Max-Planck-Institut für Quantenoptik in Garching bei München in der Fachzeitschrift Physical Review Letters ein neues Konzept für die Erzeugung stark fokussierter elektromagnetischer Felder.

Überraschendes Verhalten

Fließt ein elektrischer Strom durch eine Spule, erzeugt er elektromagnetische Wellen, die sich in alle Richtungen ausbreiten. Wird die Spule in einen hohlen Zylinder gesteckt, dessen Oberfläche die Wellen perfekt reflektiert, dann geschieht etwas sehr Überraschendes. „Mit einem solchen Aufbau lassen sich beliebig stark fokussierte Pulse in beinahe gleichem zeitlichen Abstand erzeugen“, sagt der Nachwuchsforscher Patrick Maurer. „Je mehr Schwingungsmoden angeregt werden, desto stärker werden die Felder fokussiert.“

Mit Hilfe von analytischen Berechnungen haben die Theoretiker die Physik dieses Systems so gut durchdrungen, dass sie ausgehend von den Reflexionen der elektromagnetischen Wellen an der Innenseite des Zylinders die Stromimpulse in der Spule so konstruieren konnten, dass eine definierte Anzahl von Moden angeregt wird.

„Dank der besonderen Eigenschaften des Systems muss der Impuls nur ganz geringfügig angepasst werden, um die Anzahl der Moden zu ändern – sprich, um das Feld stärker zu fokussieren. Die durchschnittliche Frequenz des Impulses bleibt im Wesentlichen immer die gleiche“, erzählt Jordi Prat-Camps, Postdoc im Team von Oriol Romero-Isart. Über den Radius des Zylinders lässt sich der Frequenzbereich des erzeugten Feldes bestimmen, mit einem, einige Zentimeter dicken Zylinder lassen sich zum Beispiel fokussierte Mikrowellenpulse erzeugen.

Technologische Herausforderungen

Mit numerischen Simulationen konnten die Innsbrucker Physiker ihre analytischen Berechnungen bestätigen. Dabei zeigte sich, dass die Felder ihre besonderen Eigenschaften noch eine Zeit lang beibehalten, wenn sie den Zylinder durch eine der beiden Öffnungen verlassen. Technologisch interessant ist das neue Konzept überall dort, wo stark fokussierte Felder benötigt werden, zum Beispiel in der Mikroskopie, wo damit noch exaktere Beobachtungen möglich wären.

Für die Umsetzung ihres Vorschlages nennen die Theoretiker zwei Dinge, die zu beachten sind: „Erstens muss ein Material gefunden werden, das einen möglichst hohen Frequenzbereich optimal reflektiert“, sagt Jordi Prat-Camps. „Und dann ist eine präzise Erzeugung der von uns errechneten Stromimpulse notwendig. Je besser man diese Anforderungen erfüllen kann, umso deutlicher wird der gewünschte Effekt zu sehen sein.”

Gefördert wurde die Arbeit unter anderem vom Europäischen Forschungsfonds ERC und dem österreichischen Bundesministerium für Wissenschaft, Forschung und Wirtschaft.

Publikation: Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide P. Maurer, J. Prat-Camps, J. I. Cirac, T. W. Hänsch, O. Romero-Isart. Phys. Rev. Lett. 119, 043904 DOI: 10.1103/PhysRevLett.119.043904 (Preprint: https://arxiv.org/abs/1705.03231)

Kontakt:
Patrick Maurer
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Tel.: +43 512 507 4731
E-Mail: patrick.maurer@oeaw.ac.at
Web: https://iqoqi.at/en/group-page-romero-isart

Christian Flatz
Public Relations
Mobil: +43 676 872532022
E-Mail: pr-iqoqi@oeaw.ac.at

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.119.043904 - Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide P. Maurer, J. Prat-Camps, J. I. Cirac, T. W. Hänsch, O. Romero-Isart. Phys. Rev. Lett. 119, 043904
http://iqoqi.at/en/group-page-romero-isart - Arbeitsgruppe Quantum Nanophysics, Optics and Information

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics