Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker designen ultrascharfe Pulse

27.07.2017

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung auf sehr kleine räumliche und zeitliche Dimensionen zu fokussieren. Ingenieure bedienen sich dazu unterschiedlicher Methoden.


Mit diesem Aufbau lassen sich beliebig stark fokussierte Pulse erzeugen.

IQOQI Innsbruck


Je mehr Schwingungsmoden angeregt werden, desto stärker werden die Felder fokussiert.

IQOQI Innsbruck

Eine Gruppe um den Physiker Oriol Romero-Isart vom Institut für Quantenoptik und Quanteninformation (IQOQI) und dem Institut für Theoretische Physik der Universität Innsbruck präsentiert nun gemeinsam mit Ignacio Cirac und Theodor Hänsch vom Max-Planck-Institut für Quantenoptik in Garching bei München in der Fachzeitschrift Physical Review Letters ein neues Konzept für die Erzeugung stark fokussierter elektromagnetischer Felder.

Überraschendes Verhalten

Fließt ein elektrischer Strom durch eine Spule, erzeugt er elektromagnetische Wellen, die sich in alle Richtungen ausbreiten. Wird die Spule in einen hohlen Zylinder gesteckt, dessen Oberfläche die Wellen perfekt reflektiert, dann geschieht etwas sehr Überraschendes. „Mit einem solchen Aufbau lassen sich beliebig stark fokussierte Pulse in beinahe gleichem zeitlichen Abstand erzeugen“, sagt der Nachwuchsforscher Patrick Maurer. „Je mehr Schwingungsmoden angeregt werden, desto stärker werden die Felder fokussiert.“

Mit Hilfe von analytischen Berechnungen haben die Theoretiker die Physik dieses Systems so gut durchdrungen, dass sie ausgehend von den Reflexionen der elektromagnetischen Wellen an der Innenseite des Zylinders die Stromimpulse in der Spule so konstruieren konnten, dass eine definierte Anzahl von Moden angeregt wird.

„Dank der besonderen Eigenschaften des Systems muss der Impuls nur ganz geringfügig angepasst werden, um die Anzahl der Moden zu ändern – sprich, um das Feld stärker zu fokussieren. Die durchschnittliche Frequenz des Impulses bleibt im Wesentlichen immer die gleiche“, erzählt Jordi Prat-Camps, Postdoc im Team von Oriol Romero-Isart. Über den Radius des Zylinders lässt sich der Frequenzbereich des erzeugten Feldes bestimmen, mit einem, einige Zentimeter dicken Zylinder lassen sich zum Beispiel fokussierte Mikrowellenpulse erzeugen.

Technologische Herausforderungen

Mit numerischen Simulationen konnten die Innsbrucker Physiker ihre analytischen Berechnungen bestätigen. Dabei zeigte sich, dass die Felder ihre besonderen Eigenschaften noch eine Zeit lang beibehalten, wenn sie den Zylinder durch eine der beiden Öffnungen verlassen. Technologisch interessant ist das neue Konzept überall dort, wo stark fokussierte Felder benötigt werden, zum Beispiel in der Mikroskopie, wo damit noch exaktere Beobachtungen möglich wären.

Für die Umsetzung ihres Vorschlages nennen die Theoretiker zwei Dinge, die zu beachten sind: „Erstens muss ein Material gefunden werden, das einen möglichst hohen Frequenzbereich optimal reflektiert“, sagt Jordi Prat-Camps. „Und dann ist eine präzise Erzeugung der von uns errechneten Stromimpulse notwendig. Je besser man diese Anforderungen erfüllen kann, umso deutlicher wird der gewünschte Effekt zu sehen sein.”

Gefördert wurde die Arbeit unter anderem vom Europäischen Forschungsfonds ERC und dem österreichischen Bundesministerium für Wissenschaft, Forschung und Wirtschaft.

Publikation: Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide P. Maurer, J. Prat-Camps, J. I. Cirac, T. W. Hänsch, O. Romero-Isart. Phys. Rev. Lett. 119, 043904 DOI: 10.1103/PhysRevLett.119.043904 (Preprint: https://arxiv.org/abs/1705.03231)

Kontakt:
Patrick Maurer
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Tel.: +43 512 507 4731
E-Mail: patrick.maurer@oeaw.ac.at
Web: https://iqoqi.at/en/group-page-romero-isart

Christian Flatz
Public Relations
Mobil: +43 676 872532022
E-Mail: pr-iqoqi@oeaw.ac.at

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.119.043904 - Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide P. Maurer, J. Prat-Camps, J. I. Cirac, T. W. Hänsch, O. Romero-Isart. Phys. Rev. Lett. 119, 043904
http://iqoqi.at/en/group-page-romero-isart - Arbeitsgruppe Quantum Nanophysics, Optics and Information

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte