Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker der Universität Stuttgart nutzen hohle Glasfasern für Quantentechnik der Zukunft

07.07.2014

Eine Photonen-Drehtür bei Raumtemperatur

Für abhörsichere Kommunikation, Datenaustausch zwischen Quantencomputern oder höchstempfindliche Sensoren sind Lichtquellen hilfreich, die fein säuberlich ein Lichtteilchen nach dem anderen aussenden, also wie eine Drehtür für Photonen arbeiten. Diese funktionieren bislang aber nur bei Temperaturen nahe dem absoluten Nullpunkt, was eine technische Nutzung erschwert.


Ein neues System für die Quantenoptik: Hochangeregte Atome in Hohlkernfasern.

Universität Stuttgart / 5. Physikalisches Institut

Physiker des Zentrums für Integrierte Quantenwissenschaft und –technologie (IQST) an der Universität Stuttgart haben nun eine neue mikroskopisch kleine Technologie entwickelt, die eine Photonen-Drehtür sogar bei Raumtemperatur in Aussicht stellt. Dafür nutzten sie hohle Glasfasern. Die Fachzeitschrift Nature Communications berichtete darüber in ihrer Ausgabe vom 19. Juni 2014*.

Ein Alltag ohne Licht? Undenkbar. Glasfasern übertragen Daten, Laserlicht liest BluRay-Discs oder operiert die Augenhornhaut. Dass Licht so vielseitig nutzbar ist, liegt an seiner vielseitigen Natur. Unterschiedliche Lichtquellen erzeugen unterschiedliches Licht.

Die Unterschiede spiegeln sich unter anderem in der Art und Weise wieder, wie Lichtteilchen, so genannte Photonen, die Lichtquelle verlassen. Normale Lampen produzieren „unordentliches“ Licht: Die Photonen kommen nicht als gleichmäßiger Strom, sondern portionsweise heraus. Laserlicht ist schon etwas ordentlicher: der Lichtstrom ist gleichmäßiger, jedoch immer noch mit Portionen aus mehreren Photonen.

Für manche neuartige technische Anwendungen brauchen Physiker noch besser geordnetes Licht: Die Photonen sollen eines nach dem anderen aus der Quelle kommen, ähnlich wie Menschen hinter einer Drehtür. Denn nur so lassen sich die quantenphysikalischen Eigenschaften einzelner Photonen nutzen um zum Beispiel Daten abhörsicher auszutauschen. Zwar gibt es solche Photonen-Drehtüren bereits. Es hapert allerdings noch mit ihrer Anwendbarkeit, da sie das „ordentliche“ Licht nur bei äußerst tiefen Temperaturen produzieren. Die dafür nötigen Apparaturen füllen ganze Labore.

Nun haben Physiker des IQST an der Universität Stuttgart und des Max-Planck-Instituts für die Physik des Lichtes in Erlangen einen wichtigen Schritt hin zu einer Drehtür für Photonen getan, die sogar bei Raumtemperatur funktionieren könnte. Der wesentliche Teil ihres Experimentes besteht aus einer hohlen Glasfaser. Die Forscher um Robert Löw wollen einen schon bekannten Effekt nutzen, um die „Photonen-Drehtür“ zu verwirklichen.

Physiker um Sebastian Hofferberth an der Uni Stuttgart haben zuvor bei tiefen Temperaturen folgendes Experiment gemacht. Ein Gas aus Atomen eines bestimmten Elementes absorbiert normalerweise Laserlicht mit einer bestimmten Wellenlänge. Beleuchtet man das Medium mit einem zweiten Laser bestimmter Wellenlänge, dem so genannten Kontrolllaser, dann lässt das Gas einen Teil der Photonen des ersten Lasers durch. Das Gas lässt also das Laserlicht wieder ungestört hindurch.

Der Trick hin zu einzelnen Photonen besteht nun darin, mit dem Laserlicht die Atome im Gas zu so genannten Rydberg-Atomen anzuregen. Bei diesen kreist das äußerste Elektron auf einer mehrere Tausendstel Millimeter durchmessenden Bahn um den Atomkern. Rydberg-Atome sind damit 10.000 Mal größer als herkömmliche Atome. Wegen ihrer Größe beeinflussen Rydberg-Atome sich gegenseitig sehr stark. Das hat zur Folge, dass beim Einschalten des Kontrolllasers die Rydberg-Atome deutlich schwächer transparent werden als zuvor die herkömmlichen Atome. Genau gesagt sorgt die Quantenphysik dafür, dass jedes Rydberg-Atom nur ein einziges Photon passieren lässt.

Hier setzen die Stuttgarter Forscher an. Sie wollen den Drehtür-Effekt mit photonischen Kristallfasern, gefüllt mit Atomen, verwirklichen. In diesen speziellen Fasern behält das Laserlicht entlang der gesamten Faserlänge die benötigte hohe Intensität bei. Daher ordnen sich darin sehr viel mehr als nur ein paar Rydberg-Atome als Drehtüren hintereinander an. Die Nutzung der Faser, sind die Physiker überzeugt, erlaubt es auch, den Effekt bei Raumtemperatur zu beobachten. Zwar flitzen dann die Rydberg-Atome in der Faser hin und her und prallen in Bruchteilen einer Sekunde an die Faserwand, was sie eigentlich für den Drehtür-Effekt unbrauchbar macht. Doch die hohe Anzahl der hintereinander in der langen Faser liegenden Rydberg-Atome gleicht diesen Nachteil wieder aus. Viele kurzlebige Rydberg-Atome sind genauso gut wie wenige langlebige, so die Hoffnung.

Eine Sorge konnten die Stuttgarter Forscher allerdings nun mit dieser Arbeit beseitigen: Da der Kanal der Hohlfaser mit 19 Mikrometern nur unwesentlich mehr Durchmesser hat als ein Rydberg-Atom groß ist, könnte seine Wand die Atome stören und den Drehtür-Effekt unterbinden. Nun klärten die Physiker die Frage, ob „freilaufende“ Rydberg-Atome sich anders verhalten als Atome in Käfighaltung. Ergebnis: Sie tun es nicht, die Rydbergatome sehen Ihren Käfig einfach gar nicht, zumindest solange es nicht bis es zu einer Atom-Wand Kollision kommt. Das geschieht zwar relativ schnell, aber die kurze Zeit sollte ausreichen um den Drehtür-Effekt zu verwirklichen.

*Originalpublikation: G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St.J. Russell, R. Löw: "Rydberg atoms in hollow-core photonic crystal fibres", Nature Communications 5 4132 (2014)

Weitere Informationen: Robert Löw, Universität Stuttgart, 5. Physikalisches Institut, Tel. +49 711 685 64954, E-Mail: r.loew@physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Berichte zu: Communications Laser Photon Physik Quantenphysik Rydberg-Atom

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte