Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker der Universität Leipzig entwickeln Verbundmaterialien für Speicherzellen der Zukunft

07.03.2016

Physiker der Universität Leipzig haben neuartige, sogenannte multiferroische Verbundmaterialien entwickelt, die künftig in Daten-Speicherzellen Verwendung finden könnten. Weltweit wird zurzeit intensiv nach derartigen Materialien gesucht, die eine Steuerung der magnetischen Wirkung mit einem elektrischen Signal oder auch umgekehrt erlauben. Damit könnten bisher unbekannte und zukunftsweisende elektronische Bauelemente wie "magneto-elektrische" Sensoren oder Datenspeicher hergestellt werden. Ihre Forschungsergebnisse haben sie jetzt in der renommierten Fachzeitschrift "Advanced Materials Interfaces" veröffentlicht.

Die Experimentalphysiker Prof. Dr. Michael Lorenz und Prof. Dr. Marius Grundmann vom Institut für Experimentelle Physik II nutzen dazu ein neuartiges Konzept, bei dem extrem dünne, nur wenige Atomlagen dicke Schichten aus einem multiferroischen und einem ferroelektrischen Stoff abwechselnd übereinander gestapelt werden. Beide Materialien sind Oxide, und die periodische Schichtstapelstruktur heißt Übergitter.


Labor zur Laser-Plasmaabscheidung von Prof. Lorenz und Prof. Grundmann

Foto: Prof. Dr. Michael Lorenz/Institut für Experimentelle Physik II

Hergestellt werden diese Schichtstapel mit der Methode der "gepulsten Laser-Plasmaabscheidung", bei der die beiden Oxidmaterialien abwechselnd mit einem hochleistungsfähigen Laser im Vakuum genau dosiert verdampft werden und sich dann kontrolliert Atomlage für Atomlage auf der Probe niederschlagen.

Es hat sich bei der Untersuchung der Leipziger Proben gezeigt, dass die erwünschte "magneto-elektrische" Kopplung zwischen Magnetismus und Elektrizität in diesen Übergittern besonders hoch ist, wenn die Anordnung der Atome an den Übergängen zwischen beiden Oxidmaterialien besonders gleichmäßig und geordnet ist.

"Die Übergitter zeigen deutlich bessere Eigenschaften als jegliche unstrukturierte Volumenmaterialien, über die bisher berichtet wurde. Die magnetoelektrische Kopplung unserer oxidischen Verbundfilme liegt im internationalen Spitzenfeld", sagt Prof. Lorenz.

Prof. Grundmann erläutert: "Unsere Übergitter bestätigen die konzeptionelle Idee des Sonderforschungsbereiches 762, in dem diese Arbeit gefördert wird, nämlich dass Oxid-Materialien mit Grenzflächen neue und verbesserte Eigenschaften haben. Unsere Arbeiten machen magnetische Materialien mit der Mikroelektronik kompatibel."

Die beiden Physiker kooperieren dabei mit der Katholischen Universität in Löwen (Leuven) in Belgien. Die Leipziger Schichtstapel werden dort bezüglich des magneto-elektrischen Anwendungseffektes im Detail charakterisiert.

Gefördert werden die Arbeiten der Leipziger Physiker von der Deutschen Forschungsgemeinschaft im Sonderforschungsbereich SFB 762 unter dem Dachthema "Funktionalität oxidischer Grenzflächen". Der SFB wird für weitere vier Jahre bis 2019 gefördert.

In den kommenden Monaten wollen Lorenz und Grundmann den physikalischen Kopplungseffekt zwischen magnetischen und elektrischen Feldern noch weiter erforschen, sodass bald erste "magneto-elektrische" Speicherdemonstratoren vorgestellt werden können.

Fachveröffentlichung:

Epitaxial Coherence at Interfaces as Origin of High Magnetoelectric Coupling in Multiferroic BaTiO3-BiFeO3 Superlattices
DOI: 10.1002/admi.201500822

Weitere Informationen:

Prof. Dr. Marius Grundmann
Telefon: +49 341 97-32650
E-Mail: grundmann@physik.uni-leipzig.de
Web: http://www.uni-leipzig.de/~hlp


Prof. Dr. Michael Lorenz
Telefon: +49 341 97-32661
E-Mail: mlorenz@physik.uni-leipzig.de
Web: http://www.uni-leipzig.de/~hlp

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/admi.201500822/abstract;jsessionid=70...

Susann Huster | Universität Leipzig

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik