Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker der Saar-Uni zeigen, wie man empfindliche Quantensysteme stabilisiert

03.12.2015

Die Quantenphysik birgt technologische Möglichkeiten, die mit heutigen Technologien nicht zu vergleichen sind: Quantencomputer beispielsweise könnten Probleme viel schneller als heutige Rechner lösen. Die Crux ist aber, dass Quanten-Systeme höchst instabil sind. Ihren Zustand so zu halten, dass sie nutzbar sind, ist derzeit eine der größten Herausforderungen der Physik. Den Saarbrücker Physikern Giovanna Morigi und Jürgen Eschner ist es gemeinsam mit dem Physik-Nobelpreisträger von 2012, David Wineland, und seinen Mitarbeitern gelungen, eine Methode zu beschreiben, die ein solches System stabilisiert. Sie haben diese Methode in der Zeitschrift „Physical Review Letters“ veröffentlicht.

Der Quantenphysik liegt ein Prinzip zugrunde, das für Nicht-Physiker schwer nachzuvollziehen ist: Ein Teilchen, zum Beispiel ein Lichtteilchen (Photon) oder ein Atom, befindet sich nicht in einem eindeutigen Zustand, sondern kann zu einem bestimmten Zeitpunkt zwei Zustände zugleich einnehmen.

Auf die Computertechnologie übertragen bedeutet das zum Beispiel, dass die Bits, aus denen eine Information auf einem normalen Computer besteht, die Zustände 1 oder 0 haben können, auf einem Quantencomputer hingegen die Zustände 1 und 0 gleichzeitig, in jeder beliebigen Kombination. Ein Quantencomputer kann in derselben Zeit, in der ein herkömmlicher 32-Bit-Rechner einen seiner 2 hoch 32 möglichen Zustände verarbeitet, parallel alle diese Zustände verarbeiten.

Den Zustand eines Systems solcher Teilchen nennen Physiker „verschränkt“. Das Quantensystem hat dabei eine wichtige Eigenschaft: Untersucht man den Zustand eines Teilchens im System, kennt man automatisch den Zustand des gesamten Systems. Die Teilchen in diesem verschränkten Zustand zu halten, ist allerdings sehr schwierig und eine der größten Herausforderungen für die zeitgenössische Physik. Bereits winzigste äußere Einflüsse können das Quantensystem zerstören, und die vorteilhaften Eigenschaften sind dahin.

„Methoden zur robusten Erzeugung solcher Zustände sind also sehr gesucht. Dies ist vergleichbar mit einer Konstruktionsvorschrift für ein Leichtbauboot, welches auch bei schwerem Sturm ruhig seinen Kurs hält”, erklären Giovanna Morigi (Professorin für Theoretische Quantenphysik an der Universität des Saarlandes) und Jürgen Eschner (Professor für Quanten-Photonik, ebenfalls Universität des Saarlandes). Gemeinsam mit dem Physik-Nobelpreisträger David Wineland (National Institute of Standards and Technology, Boulder/Colorado) und weiteren Physikern beschreiben sie nun ein System aus vier Atomen, das in einen verschränkten Zustand übergeht und stabil dort bleibt.

Die Forscher schlagen vor, das Quantensystem mit einer gezielten Sequenz von Laser-Impulsen energetisch anzuregen. Das alleine würde aber nicht reichen, um die Verschränkung stabil zu halten. „Gleichzeitig wird das System mit einem weiteren Laser gekühlt“, ergänzen die Wissenschaftler, die gemeinsam ein Forschungssemester bei David Wineland verbracht haben. Der besondere Effekt der Methode besteht darin, dass die Laserkühlung, welche normalerweise die Verschränkung zunichte macht, hier im Zusammenwirken mit den Pulsen den umgekehrten Effekt entwickelt, diese zu stabilisieren.

Die Erkenntnisse, die das internationale Forscherteam gewonnen hat, sind wichtige Grundlagen für weiterführende Forschungen: Die Gruppe von David Wineland entwickelt Atomuhren, die Quantentechnologien wie eben die Verschränkung mehrerer Atome zur präziseren Zeitmessung ausnutzen. Die Gruppen von Giovanna Morigi und Jürgen Eschner arbeiten an Techniken zur Quantenkommunikation, welche auf der Verschränkung zwischen Atomen und Photonen beruhen.

Weitere Informationen:
Prof. Dr. Jürgen Eschner
Tel. (0681) 30258016
E-Mail: juergen.eschner@physik.uni-saarland.de

Prof. Dr. Giovanna Morigi
Tel.: (0681) 30257472
E-Mail: giovanna.morigi@physik.uni-saarland.de

Der Aufsatz „Dissipative Quantum Control of a Spin Chain“ erschien am 13. November in der Fachzeitschrift „Physical Review Letters“.

DOI: http://dx.doi.org/10.1103/PhysRevLett.115.200502

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.115.200502

Thorsten Mohr | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie