Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker bestimmen zum ersten Mal winzige Massendifferenz von Elementarteilchen

27.03.2015

Einem internationalen Team von Wissenschaftlern unter Federführung der Bergischen Universität Wuppertal ist es erstmals gelungen, die winzigen Massendifferenzen von Elementarteilchen genauer zu berechnen. Ihre Ergebnisse haben die Forscher um die Theoretischen Teilchenphysiker Prof. Dr. Zoltan Fodor, Dr. Christian Hoelbling und Prof. Dr. Kalman Szabo jetzt im renommierten US-Wissenschaftsmagazin „Science“ veröffentlicht.

Die Stabilität gewöhnlicher Materie und die Existenz chemischer Elemente, wie wir sie kennen, beruht auf dem kleinen Massenunterschied zweier Elementarteilchen, aus denen sich Atomkerne zusammensetzen: dem Proton und dem Neutron. Gemeinsam können Protonen und Neutronen stabile Atomkerne bilden und so – zusammen mit Elektronen in der Atomhülle – die uns umgebende Welt aufbauen.

Freie Neutronen sind hingegen nicht stabil. Sie zerfallen mit einer Halbwertszeit von circa zehn Minuten und hinterlassen dabei ein Proton. Dieser Prozess war entscheidend für die frühe Entstehung der Elemente in den ersten 20 Minuten unseres Universums und kann nur deshalb so ablaufen, weil ein freies Neutron um 0.14 Prozent schwerer als ein freies Proton ist.

Den Wissenschaftlerinnen und Wissenschaftlern ist es jetzt gelungen, diesen winzigen Massenunterschied direkt aus der fundamentalen Theorie, dem Standardmodell der Teilchenphysik, zu bestimmen und zu zeigen, wie er sich aus der Differenz zweier konkurrierender Effekte ergibt.

Elektromagnetische Effekte, die das Proton schwerer machen würden, stehen einem kleinen Massenunterschied der Quarks gegenüber, aus denen sich sowohl das Proton wie auch das Neutron zusammensetzen.

„Die Größe dieser Effekte und deren Differenz ermöglichen es nun quantitativ zu verstehen, wie sehr die fundamentalen Parameter der Natur aufeinander abgestimmt sein müssen, um ein Universum wie unseres möglich zu machen“, sagt Dr. Christian Hoelbling.

Mit den vorgelegten Ergebnissen sei es zum Beispiel möglich, präzise zu bestimmen, wie sehr sich die Elementarladung ändern müsste, damit Wasserstoffatome nicht mehr stabil sind. „Darüber hinaus erlauben es diese Berechnungen Massenunterschiede zwischen anderen, schweren Elementarteilchen vorherzusagen, die teilweise noch nicht beobachtet wurden“, so Hoelbling.

Kontakt:
PD Dr. Christian Hoelbling
Fachbereich Mathematik und Naturwissenschaften
Telefon 0202/439-3517
E-Mail hch@physik.uni-wuppertal.de

Eva Noll | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-wuppertal.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie