Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker berechnen, wann Atomkerne instabil werden

08.12.2017

Wenn Atomkerne zu viele Neutronen enthalten, brechen sie auseinander. Ein internationales Physiker-Team hat nun erstmals eine Methode entwickelt, die eine exakte Berechnung ermöglicht, ab wann die Kerne instabil werden. An der internationalen Studie waren Forscher der Universität Bonn maßgeblich beteiligt. Sie ist nun in den Physical Review Letters erschienen.

Atome bestehen aus einer Hülle und einem Kern. Die Hülle wird von den negativ geladenen Elektronen gebildet. Sie sind dafür verantwortlich, dass Atome chemische Bindungen eingehen können. Der Kern ist dagegen positiv geladen. Er hält die Elektronen aufgrund der elektrostatischen Anziehung gewissermaßen fest.


Der Supercomputer JUQUEEN am Forschungszentrum Jülich, an dem die Berechnungen durchgeführt wurden.

© Foto: Forschungszentrum Jülich/Ralf-Uwe Limbach

Für die positive Kernladung sorgen dabei die Protonen. Von ihnen gibt es stets genauso viele wie Elektronen. Atome sind daher insgesamt gesehen elektrisch neutral. Ein Kohlenstoff-Atom etwa besteht aus sechs Elektronen und sechs Protonen.

Daneben enthält der Kern des Kohlenstoff-Atoms aber auch noch ungeladene Teilchen, die Neutronen. Meist sind dies im Kohlenstoff ebenfalls sechs, es können aber auch sieben oder acht sein. Wenn der Kern eines Atoms jedoch zu viele Neutronen enthält, wird er instabil. Das Atom kann dann zerbrechen – es zerfällt.

Wann das genau passiert, ist von Atom zu Atom unterschiedlich. „Bisher ließ sich nicht exakt berechnen, bei wie vielen Neutronen dieser Punkt erreicht ist“, erklärt Prof. Dr. Ulf Meißner vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn. Grund: Im Kern wirken unterschiedliche Kräfte. Die gängigen Algorithmen können manche davon genau kalkulieren, andere jedoch nur näherungsweise bestimmen.

„Freiheitsberaubung“ im Atomkern

Anders die Methode, die Meißner und seine Kollegen nun publiziert haben. Diese basiert zunächst auf einer Art „Freiheitsberaubung“. In der Realität können sich die Protonen und Neutronen nämlich an beliebigen Stellen im Raum aufhalten. Für ihre Berechnungen schränkten die Wissenschaftler diese Freiheit jedoch ein:

„Wir ordneten unsere Kernteilchen auf den Knotenpunkten eines dreidimensionalen Gitters an“, erläutert der Erstautor der Studie, Meißners Mitarbeiter Dr. Serdar Elhatisari. „Wir erlaubten ihnen also nur bestimmte, streng definierte Positionen.“ Für eine derartige Gitterkonfiguration lässt sich relativ einfach die Bindungsenergie zwischen den Teilchen bestimmen.

Im nächsten Schritt durften die Kernteilchen die Plätze tauschen. Dadurch entstand eine neue Gitterkonfiguration. Wenn diese energetisch günstiger war als die erste, diente sie als Basis für einen erneuten Platztausch. „Diesen Schritt haben wir millionenfach wiederholt“, erklärt Meißner. „Wir näherten uns dadurch immer mehr der Kern-Konfiguration, die energetisch optimal ist. Und auf dieser Grundlage konnten wir dann berechnen, ob der Kern mit der vorgegebenen Anzahl von Protonen und Neutronen stabil ist oder nicht.“

Experten sprechen auch von einem Monte-Carlo-Verfahren. Es liefert zwar exakte Ergebnisse zu den Bindungsverhältnissen im Atomkern. Aus der Zuordnung der Kernteilchen zu bestimmten diskreten Positionen ergeben sich aber auch Nachteile. So ist es im Normalfall nicht möglich, die genaue Dichteverteilung des Kerns zu berechnen. „Wir haben unser Verfahren aber so modifiziert, dass auch das möglich ist“, betont der Physiker.

Die Ergebnisse erlauben einen detaillierteren Einblick in den Aufbau der Atomkerne. Die Beteiligten hoffen unter anderem, so die Entstehung der Elemente nach dem Urknall besser nachvollziehen können. An der Studie waren neben dem Helmholtz-Institut Physiker des Forschungszentrums Jülich, der Ruhr-Universität Bochum sowie verschiedener US-Hochschulen beteiligt. Die Berechnungen wurden auf dem Supercomputer JUQUEEN am Forschungszentrum Jülich durchgeführt.

Publikation: Serdar Elhatisari, Evgeny Epelbaum, Hermann Krebs, Timo A. Lähde, Dean Lee, Ning Li, Bing-nan Lu, Ulf-G. Meißner und Gautam Rupak: Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering; Physical Review Letters; DOI: 10.1103/PhysRevLett.119.222505

Kontakt:

Prof. Dr. Ulf-G. Meißner
Helmholtz-Institut für Strahlen- und Kernphysik
Universität Bonn
Tel. 0228/732365
E-Mail: meissner@hiskp.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics