Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker beobachten Bewegung von Skyrmionen

04.02.2015

Magnetische Wirbel sind Kandidaten für künftige Datenspeicherung und Informationsverarbeitung

Kleine magnetische Wirbel könnten künftig die Datenspeicherung und Informationsverarbeitung revolutionieren, wenn sie auf kleinstem Raum schnell und zuverlässig zu bewegen sind. Einem Team von Wissenschaftlern der Johannes Gutenberg-Universität Mainz (JGU) und der TU Berlin ist es zusammen mit Kollegen aus den Niederlanden und der Schweiz gelungen, die Bewegung dieser Wirbel zu beobachten und experimentell zu untersuchen.


Magnetische Scheibe mit einem Wirbel: Die Magnetisierung ist durch die Pfeile dargestellt. Der gebogene Golddraht wird zum Erzeugen des Feldpulses benötigt.

Abb.: Benjamin Krüger

Die Skyrmionen, wie die winzigen Magnetisierungswirbel nach dem britischen Kernphysiker Tony Skyrme genannt werden, folgen demnach einer komplexen Bahn und setzen ihre Bewegung auch dann weiter fort, wenn sie nicht mehr durch äußere Impulse angestoßen werden. Dieser Effekt ist entscheidend, wenn die Skyrmionen später in einem Speicher an die gewünschte Position bewegt werden sollen. Die Forschungsarbeit wurde im Fachmagazin Nature Physics mit einem Stipendiaten der Exzellenz-Graduiertenschule "Materials Science in Mainz" (MAINZ) als Erstautor publiziert.

Skyrmionen sind kleine Magnetisierungswirbel in magnetischen Materialien. Im Falle der jetzt vorgestellten Forschungsarbeit wurden Skyrmionen mit einem Durchmesser von weniger als 100 Nanometern erzeugt, was ungefähr dem Tausendstel der Dicke eines Haars entspricht. Zunächst wurden dazu an der JGU kleine magnetische Scheiben präpariert. "Wenn wir dann ein bestimmtes externes Magnetfeld anlegen, zeigen sich in der Scheibe magnetische Wirbel", erklärt Dr. Benjamin Krüger aus der Arbeitsgruppe von Univ.-Prof. Dr. Mathias Kläui am Institut für Physik der JGU. Diese Skyrmionen wurden dann durch einen Magnetfeldpuls angestoßen, um ihre Bewegung zu verfolgen.

Die beteiligten Wissenschaftler konnten nun die Dynamik dieser Strukturen erstmals auf sehr kurzen Zeitskalen experimentell untersuchen, indem sie ein holografisches Messverfahren mit kurzen und sehr intensiven Röntgenpulsen anwendeten. Das an der TU Berlin entwickelte Verfahren kann in zeitlichen Abständen von weniger als einer Nanosekunde mehrere Bilder aufnehmen. Aus diesen Bildern lässt sich dann die Position des Wirbels ermitteln und mit theoretischen Rechnungen vergleichen.

"Die Messung zeigte, dass sich das Skyrmion auf einer sehr komplexen Bahn bewegt, einer sogenannten Hypozykloiden", erläutert Krüger. Die Tatsache, dass sich das Skyrmion auf einer solchen Kurvenbahn bewegt, setzt voraus, dass es eine gewisse Trägheit besitzt – eine Trägheit vergleichbar mit einem Auto, das sich weiterbewegt, auch nachdem das Gaspedal nicht mehr gedrückt wird. Die Trägheit des Skyrmions entsteht daher, dass sich der Wirbel verformen kann und so Energie aufnimmt. Wird das Skyrmion nicht mehr weiter durch Felder angestoßen, so führt die in ihm gespeicherte Energie zu einer weiteren Bewegung.

"Dieser Effekt wurde bisher in vielen Arbeiten nicht berücksichtigt, ist aber für die Entwicklung von sehr kleinen magnetischen Speichern essenziell", erklärt Univ.-Prof. Dr. Mathias Kläui. "Nur wenn wir diesen Effekt berücksichtigen, lässt sich der Feldpuls bestimmen, der nötig ist, um das Skyrmion später im Speicher an die gewünschte Position zu bewegen." Skyrmionen können wichtig für die Zukunft der magnetischen Datenspeicherung und Informationsverarbeitung werden. In zukünftigen Datenspeichern könnten diese Wirbel entlang eines Nanodrahts oder in anderen Nanostrukturen schnell und zuverlässig bewegt werden. Ein solcher Speicher würde auch beim Abschalten des Stroms seine Informationen behalten und es würden keine beweglichen Teile, wie der Schreib- oder Lesekopf einer Festplatte, benötigt.

Ein Vergleich mit Computersimulationen an der JGU zeigt außerdem, dass die Art der Bewegung des Skyrmions nur sehr schwach von der Form der Scheibe, in der der Wirbel erzeugt wurde, oder von Fehlern im Material beeinflusst wird. Hingegen ist eine substanzielle Abhängigkeit von der Form des Wirbels, seiner Topologie, zu beobachten. Dies lässt erwarten, dass sich das Ergebnis auf alle Arten von Skyrmionen mit derselben Topologie erweitern lässt.

"Ich freue mich neben der guten Zusammenarbeit mit den Kollegen insbesondere darüber, dass die experimentellen Messungen und auch die Theorie von Mitarbeitern aus dem Institut für Physik und der Graduiertenschule MAINZ zusammen erarbeitet wurden", ergänzt Kläui. Die Graduiertenschule MAINZ wurde in der Exzellenzinitiative des Bundes und der Länder im Jahr 2007 bewilligt und erhielt in der zweiten Runde 2012 eine Verlängerung für weitere fünf Jahre. Sie besteht aus Arbeitsgruppen der Johannes Gutenberg-Universität Mainz, der Technischen Universität Kaiserslautern und des Max-Planck-Instituts für Polymerforschung. Einer der Forschungsschwerpunkte ist die Spintronik, wobei die Zusammenarbeit mit führenden internationalen Partnern eine wichtige Rolle spielt.

Veröffentlichung:
Felix Büttner et al.
Dynamics and inertia of skyrmionic spin structures
Nature Physics, 2. Februar 2015
DOI:10.1038/nphys3234

Weitere Informationen:
Univ.-Prof. Dr. Mathias Kläui
Theorie der kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23633
E-Mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/308.php

Exzellenz Graduiertenschule Materials Science in Mainz
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-26984
Fax +49 6131 39-26983
E-Mail: mainz@uni-mainz.de
http://www.mainz.uni-mainz.de/

Weitere Informationen:

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3234.html - Originalpublikation ;
http://www.mainz.uni-mainz.de - Exzellenz-Graduiertenschule MAINZ

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie