Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physikalische Konstante besteht Alkoholtest

14.12.2012
Grundlegende Eigenschaften von Molekülen haben sich in den vergangenen sieben Milliarden Jahren nicht verändert

Das Massenverhältnis von Protonen zu Elektronen gilt als Naturkonstante. Und dies zurecht, wie neueste radioastronomische Beobachtungen einer fernen Galaxie gezeigt haben.


Schematisches Bild des Methanol-Moleküls. Die schwarze Kugel markiert das zentrale Kohlenstoffatom, die rote ein Sauerstoff-Atom und die grauen Kugeln stehen für Wasserstoff-Atome. Der gelbe Pfeil repräsentiert die interne Drehbewegung des Moleküls, deren Beeinträchtigung zu einem Quantentunneleffekt führt.
VU University Amsterdam / Paul Jansen


Luftbild des Radio-Observatoriums in Effelsberg mit dem 100-Meter-Radioteleskop. Mit diesem Teleskop führten die Forscher spektroskopische Beobachtungen des Methanol-Moleküls in Richtung der weit entfernten Galaxie PKS1830-211 durch.
MPIfR/Photo: Peter Sondermann/VisCom

Mit dem 100-Meter-Radioteleskop in Effelsberg haben Wissenschaftler der VU-Universität Amsterdam und des Max-Planck-Instituts für Radioastronomie in Bonn Absorptionslinien des Moleküls Methanol bei einer Reihe von charakteristischen Frequenzen gemessen. In einer weit entfernten Galaxie analysierten die Forscher das Spektrum des einfachsten Vertreters aus der Stoffgruppe der Alkohole.

Ergebnis: Moleküle und molekulare Materie weisen heute mit hoher Genauigkeit dieselben Eigenschaften auf wie vor sieben Milliarden Jahren. Insbesondere das Massenverhältnis von Protonen und Elektronen hat sich demnach in diesem Zeitraum um maximal hunderttausendstel Prozent geändert.

Fundamentalen Naturkonstanten wie dem Proton-zu-Elektron-Massenverhältnis können Physiker nur durch Messungen näher kommen. Zwar ergeben alle erdgebundenen Experimente für dieses Verhältnis denselben Wert. Trotzdem wäre es theoretisch möglich, dass die Konstante sich in verschiedenen Regionen des Universums oder zu unterschiedlichen Zeiten in dessen Geschichte verändert hat. Um solche Abweichungen nachzuweisen, eignet sich das Methanol-Molekül als Messfühler.

Eine Reihe von Linien im Radiospektrum dieses Moleküls würden bei einer Änderung des Proton-zu-Elektron-Massenverhältnisses eine deutliche Frequenzverschiebung zeigen, während andere Linien von dieser Verschiebung nicht betroffen wären. Erst kürzlich hat eine Gruppe an der VU-Universität Amsterdam herausgefunden, welche Eigenschaft das Methanol zu einem solch empfindlichen Messfühler macht: Letztendlich handelt es sich dabei um einen Quantentunnel-Effekt, der zustande kommt, wenn die interne Rotation des Moleküls beeinträchtigt ist. Dieser Effekt führt zu sehr hohen Werten für die Empfindlichkeits-Koeffizienten der entsprechenden Spektrallinien, die sich alle einzeln berechnen lassen.

„Dadurch wird nun das Methanol-Molekül ein idealer Testfall, um eine mögliche zeitliche Veränderung des Proton-zu-Elektron-Massenverhältnisses zu entdecken”, sagt Wim Ubachs, Professor an der VU-Universität Amsterdam und Leiter des Physik-Departments. „Deshalb haben wir vorgeschlagen, nach Linienstrahlung von Methanol im fernen Universum zu suchen, um die Struktur der so gefundenen Moleküle mit der des Methanols in der heutigen Zeit in Laborexperimenten zu vergleichen.“

Das Team beobachtete eine Galaxie, in der bereits eine Reihe verschiedener Moleküle beobachtet worden waren. Die Galaxie, die in der Sichtlinie zu einer intensiv strahlenden Radioquelle namens PKS1830-211 steht, ist etwa sieben Milliarden Lichtjahre von der Erde entfernt. Mit ihrem Suchprogramm zielten die Wissenschaftler auf vier verschiedene Linienübergänge im Radiospektrum des Methanol-Moleküls. Mithilfe des 100-Meter-Radioteleskops in Effelsberg konnten sie auch tatsächlich alle vier Linien entdecken.

„Als optische Astronomin war es für mich eine interessante Erfahrung, Beobachtungen bei so großen Wellenlängen durchzuführen, wie sie im Radiobereich auftreten“, sagt Julija Bagdonaite, Doktorandin an der VU-Universität Amsterdam und Erstautorin der Veröffentlichung. „Das Methanol-Molekül hat diese Radiowellen bereits vor sieben Milliarden Jahren absorbiert, und die Wellen haben seinen Fingerabdruck aus ferner Vergangenheit auf ihrem Weg zur Erde mit sich getragen.“

Aus einer Analyse der Quantenstruktur des Methanol-Moleküls leiteten die Forscher ab, dass sich zwei von dessen Spektrallinien, die sie bei Frequenzen um 25 GHz beobachten, kaum von einer Änderung des Proton-zu-Elektron-Massenverhältnisses beeinflussen ließen. Die anderen beiden Linien reagieren viel empfindlicher auf eine Modifikation dieses Parameters.

“Die Quelle, die wir untersucht haben, ist von unseren Beobachtungsobjekten mit Abstand am besten geeignet, um die Gültigkeit unserer lokalen Physik auch in weit entfernten exotischen Umgebungen zu untersuchen“, sagt Christian Henkel vom Max-Planck-Institut für Radioastronomie. „Es wäre phantastisch, wenn wir noch mehr Quellen dieser Art finden könnten, mit denen wir noch weiter in die Vergangenheit schauen könnten.“

Bei der Auswertung der Daten bezogen die Wissenschaftler auch systematische Effekte der Beobachtungen mit ein und kamen so zu folgendem Ergebnis: Das Massenverhältnis von Proton und Elektron hat sich im Lauf der vergangenen sieben Milliarden Jahre um einen Faktor von maximal 10-7 geändert und gilt damit zurecht als Naturkonstante. Dieses Ergebnis kann durchaus so interpretiert werden, dass die Struktur der molekularen Materie, wie aus spektralen Beobachtungen abgeleitet, sehr genau mit derjenigen vor sieben Milliarden Jahren übereinstimmt. Mögliche Abweichungen betragen nur ein Hunderttausendstel Prozent oder sogar weniger.

“Wenn wir tatsächlich Abweichungen in dieser fundamentalen Konstante finden würden, dann hätten wir ein Problem mit unserem Verständnis der Grundlagen der Physik“, schließt Karl Menten, Direktor am Max-Planck-Institut für Radioastronomie. „Vor allem wäre damit Einsteins Äquivalenzprinzip verletzt, das Herzstück der Allgemeinen Relativitätstheorie.“

Originalveröffentlichung:
Julija Bagdonaite, Paul Jansen, Christian Henkel, Hendrick L. Bethlem, Karl M. Menten, Wim Ubachs
A Stringent Limit on a Drifting Proton-to-electron Mass Ratio from Alcohol in the Early Universe

Science Express, December 13, 201

Kontakt:
Dr. Christian Henkel
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-305
E-Mail: chenkel@­mpifr-bonn.mpg.de
Prof. Dr. Karl M. Menten
Max-Planck-Institut für Radioastronomie
Telefon: +49 228 525-297
E-Mail: kmenten@­mpifr-bonn.mpg.de
Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie
Telefon: +49 2 28525-399
E-Mail: njunkes@­mpifr-bonn.mpg.de

Dr Harald Rösch | Max-Planck-Institut
Weitere Informationen:
http://www.­mpifr-bonn.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften