Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physik der Top-Quarks und Suche nach Elementarteilchen dunkler Materie

28.07.2009
Göttinger Teilchenphysik erhält mehr als 1,15 Millionen Euro aus dem BMBF-Exzellenzprogramm

Die experimentelle Teilchenphysik an der Universität Göttingen wird vom Bundesministerium für Bildung und Forschung (BMBF) für weitere drei Jahre mit mehr als 1,15 Millionen Euro gefördert.

Die Forschergruppe unter der Leitung von Prof. Dr. Arnulf Quadt untersucht die Physik des schwersten bisher bekannten Elementarteilchens, des sogenannten Top-Quarks. Außerdem suchen die Physiker nach supersymmetrischen Teilchen, die als möglicher Baustein für die dunkle Materie im Universum gelten. Zudem befassen sie sich mit der Frage nach dem Ursprung der Masse von Teilchen.

Seit 2007 sind die Göttinger Physiker im Forschungsschwerpunkt 101 aus dem Exzellenzprogramm des BMBF am Großexperiment ATLAS mit dem Teilchenbeschleuniger am europäischen Forschungszentrum CERN in Genf beteiligt. Untersucht werden dabei die Ergebnisse hochenergetischer Kollisionen von Wasserstoffteilchen.

Die Göttinger Wissenschaftler sind gemeinsam mit rund 2.000 Wissenschaftlern aus aller Welt an Forschungsvorhaben am größten je gebauten Teilchenbeschleuniger der Welt beteiligt, dem Large Hadron Collider (LHC). Sie befassen sich hier mit zentralen physikalischen Fragen zum Materiezustand des Universums kurz nach dem Urknall. Unter anderem sollen Eigenschaften des Top-Quarks und seine Wechselwirkungen mit anderen Teilchen mit hoher Präzision vermessen werden; die Göttinger Physiker gehören zu den Wissenschaftlern, die die Daten auswerten werden. Wegen seiner hohen Masse verhält sich ein Top-Quark anders als alle bisher bekannten Quarks; selbst einfache physikalische Größen wie seine elektrische Ladung sind bis heute unbekannt. Die Forscher erhoffen sich von ihren Untersuchungen Antworten auf offene Fragen im Mikrokosmos.

Zudem befassen sich die Göttinger Forscher mit der Supersymmmetrie. In diesem theoretischen Modell gibt es zu jedem Teilchen ein Partnerteilchen mit identischen Eigenschaften aber unterschiedlichem Eigendrehimpuls. "Die Supersymmetrie sagt die Existenz von Teilchen vorher, deren Eigenschaften mit der unbekannten Form der kalten, dunklen Materie im Universum übereinstimmen. Mit den Experimenten am LHC erhoffen wir uns, dieses Rätsel lüften und die Teilchen- mit der Astrophysik verbinden zu können", so Prof. Quadt. Zudem erhoffen sich die Forscher, mit den Exprimenten am LHC das sogenannte Higgs-Boson zu finden. Dieses Teilchen regt in der Theorie des schottischen Physikers Peter Higgs ein Feld an, welches das Universum ausfüllt und in dem Elementarteilchen ihre Geschwindigkeit reduzieren, also träge werden.

Mit den Fördergeldern des BMBF arbeiten die Göttinger Wissenschaftler des II. Physikalischen Instituts auch an der Weiterentwicklung von Pixeldetektoren für das ATLAS Experiment mit. Mit diesen Detektoren können die Flugbahnen von Elementarteilchen vermessen werden, die bei den experimentellen Proton-Proton-Kollisionen herausgeschleudert werden. Dabei müssen 40 Millionen Kollisionen pro Sekunde aufgezeichnet werden. Die Göttinger Teilchenphysiker haben sich bislang an der Entwicklung eines Moduls für diese Detektoren mit hochsensiblen Mess-Sensoren und schneller Ausleseelektronik beteiligt. Zudem arbeiten sie an der Auswahl derjenigen Daten mit, die langfristig im CERN-Rechenzentrum gespeichert werden sollen.

Für die Weiterverarbeitung der enormen Datenmenge aus den Experimenten am LHC wird am CERN das Konzept des weltweit verteilten und vernetzten Rechnens (Grid-Computing) entwickelt. Gemeinsam mit der Niedersächsischen Staats- und Universitätsbibliothek Göttingen, der Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen sowie Kollegen aus der Theoretischen Physik, der Bioinformatik und der Medizinischen Informatik haben die Göttinger Teilchenphysiker das Grid-Ressourcenzentrum GoeGrid im Frühling 2008 aufgebaut. Es wird als regionales Rechenzentrum dem weltweiten LHC Computing Grid zur Verfügung gestellt.

Auch die experiementelle Forschung weiterer Wissenschaftler am II. Physikalischen Institut wird mit den Fördergeldern des BMBF unterstützt. Eine Arbeitsgruppe unter der Leitung von Prof. Dr. Ariane Frey ist an einem Experiment in Japan zur Untersuchung der Materie-Antimaterie-Asymmetrie beteiligt, um durch noch präzisere Messungen neue Erkenntnisse über die Entwicklung des Universums nach dem Urknall zu gewinnen. Hierfür entwickeln die Göttinger Wissenschaftler einen neuartigen Pixeldetektor zur Vermessung der Flugbahn von Elementarteilchen nahe ihrem Entstehungsort.

Kontaktadresse:
Prof. Dr. Arnulf Quadt
Georg-August-Universität Göttingen
Fakultät für Physik, II. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-7635, Fax (0551) 39-4493
E-Mail: aquadt@uni-goettingen.de

Dr. Bernd Ebeling | idw
Weitere Informationen:
http://www.ph2.physik.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise