Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photopharmakologie - Lichtschalter gegen Schmerz und Blindheit

21.02.2014
Von LMU-Wissenschaftlern entwickelte molekulare optische Schalter können Nervenzellen gezielt beeinflussen. Dies eröffnet der Medizin auf vielen Gebieten neue Chancen – etwa in der Schmerztherapie oder auch bei bestimmten Sehstörungen.

Alle Sinneseindrücke beruhen auf der Kommunikation zwischen Nervenzellen. Bei der Signalübertragung von Zelle zu Zelle spielen in die Zellwand eingebaute Neurorezeptoren eine entscheidende Rolle.

Diese zellulären Kommunikationsschnittstellen über Licht steuerbar zu machen und so künstlich zu beeinflussen, ist das Ziel von Dirk Trauner, Professor für Chemische Biologie und Genetik an der LMU.

„Wir kombinieren dabei synthetische molekulare Schalter, die auf Licht reagieren, mit natürlichen Rezeptoren“, sagt Trauner. „Diese hybriden Fotorezeptoren machen dann die entsprechenden Nervenzellen für Licht ansprechbar – langfristig wollen wir so neue Behandlungsmöglichkeiten bei Fehlfunktionen des Nervensystems etablieren“. Gleich zwei neue Studien berichten nun über wichtige Fortschritte auf diesem Weg, und zwar bei Sehstörungen und beim Schmerzsinn.

Synthetisches Opioid gegen den Schmerz

Um Schmerzen zu unterdrücken, sind schon seit Jahrtausenden Substanzen mit morphinartigen Eigenschaften, sogenannte Opioide, in Gebrauch. Auch körpereigene „Schmerzmittel“ wie Endorphine gehören zu dieser Substanzgruppe. Trauner und seinem Team ist es nun gelungen, die Schlüsselschalter der Schmerzwahrnehmung – die Opioidrezeptoren – durch Licht steuerbar zu machen, indem sie das synthetische Opioid Fentanyl chemisch modifizierten.

Fentanyl wird von Medizinern als Narkose- oder als extrem starkes Schmerzmittel benutzt. Dockt das modifizierte Fentanyl an einen Opiodrezeptor an, kann diese ursprünglich blinde molekulare Maschine durch Lichtreize gezielt aktiviert oder deaktiviert werden, wie die Wissenschaftler im Journal Angewandte Chemie berichten.

Das Geheimnis aller optischen Schalter liegt in ihrer besonderen Struktur: Die synthetischen Schalter aus Trauners Labor enthalten eine charakteristische chemische Doppelbindung, an der sich das Molekül abhängig von der Wellenlänge des Lichts strecken oder abknicken kann. „Licht ist sehr genau kontrollierbar, sodass wir die Zellen ganz gezielt ansprechen können. Außerdem ist die Reaktion reversibel“, erläutert Trauner die Vorteile der Methode.

„Dieser Erfolg ist besonders spannend, weil Opioidrezeptoren zur großen Familie der sogenannten G-Protein-gekoppelten Transmembranrezeptoren (GPCRs) gehören, die einen Großteil der pharmazeutischen Zielmoleküle ausmachen“, sagt Matthias Schönberger, der Erstautor der Studie. „Die Möglichkeit einen Opioidrezeptor mit Licht zu steuern, wird nun neue Einblicke in diese ausgesprochen wichtige Rezeptorklasse liefern und stellt eine Chance für neuartige Schmerztherapien dar.“

Überbrückung für defekte Sehzellen

Auch die Sehpigmente in den Zapfen und Stäbchen der Netzhaut gehören zu den GPCR und sind die einzigen Vertreter dieser Familie, die von Natur aus auf Licht reagieren. Sind die Fotorezeptoren im Auge defekt, kann der Lichtreiz nicht aufgenommen werden – die Folge sind Sehstörungen und bestimmte Formen erblicher Blindheit. Wissenschaftler der US-amerikanischen Universität Berkeley und Dirk Trauner konnten nun erstmals defekte Fotorezeptoren mithilfe eines synthetischen Schalter quasi kurzschließen und die – immer noch funktionsfähigen – Nervenzellen, die den Fotorezeptoren nachgeschaltet sind, direkt lichtsensitiv machen.

„Wir konnten bereits vor einiger Zeit zeigen, dass das sogenannte AAQ-Molekül Nervenzellen lichtsensitiv macht, indem es Ionenkanäle in den Nervenzellen beeinflusst“, sagt Trauner. Ihm gelang es nun, eine verbesserte Variante des AAQ-Schalters herzustellen. Die Wissenschaftler in Berkeley konnten mit diesem DENAQ genannten Molekül im Mausmodell nachweisen, dass es eine blinde Retina tatsächlich wieder für Licht empfänglich machen kann, wie die Forscher im Journal Neuron berichten. „DENAQ ist klinisch wesentlich relevanter als AAQ, weil es spezifisch bestimmte Ionenkanäle beeinflusst, die bei der Weiterleitung von Lichtreizen im Auge eine wichtige Rolle spielen“, sagt Trauner. Zudem reagiert es anders als AAQ auf Wellenlängen des Lichts, die gewöhnlichem Tageslicht entsprechen. „Möglicherweise kann dieser Ansatz in der Zukunft helfen, bei bestimmten Formen der Blindheit das Augenlicht wieder herzustellen.“

„Grundsätzlich sind noch viele weitere Anwendungen für Photopharmakologe denkbar“, sagt Trauner. „GPCRs etwa sind auch Ziele von Neurotransmittern, die mit Erkrankungen des zentralen Nervensystems in Zusammenhang stehen, daher könnten die Schalter auch für zukünftige Anwendungen etwa bei Depressionen oder Epilepsie interessant sein. Darüber hinaus könnte man die unübertroffene zeitliche und räumliche Präzision von Licht dazu ausnützen, etwa Zytostatika, Analgetika, oder Antidiabetika nur dort zu aktivieren, wo sie Ihre Wirkung entfalten sollen.“

göd

A Photochromic Agonist for m-Opioid Receptors
Matthias Schönberger and Dirk Trauner
Angewandte Chemie 2014
DOI: 10.1002/anie.201309633
Restoring Visual Function to Blind Mice with a Photoswitch that Exploits Electrophysiological Remodeling of Retinal Ganglion Cells
Ivan Tochitsky, Aleksandra Polosukhina, Vadim E. Degtyar, Nicholas Gallerani, Caleb M. Smith, Aaron Friedman, Russell N. Van Gelder, Dirk Trauner, Daniela Kaufer, and Richard H. Kramer
Neuron 2014
http://dx.doi.org/10.1016/j.neuron.2014.01.003
Kontakt:
Prof. Dr. Dirk Trauner
Department Chemie
Phone: +49 89 2180-77800
Fax: +49 89 2180-77972
dirk.trauner@lmu.de
http://www.cup.uni-muenchen.de/oc/trauner/

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics