Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photonennachweis ohne Absorption: Wissenschaftler am MPQ können ein optisches Photon zweimal sehen

15.11.2013
Alle bislang zur Verfügung stehenden Methoden zur Detektion von Licht haben eines gemeinsam: sie beruhen auf der Absorption der Lichtquanten und damit auf ihrer Zerstörung. Ein Team aus der Abteilung Quantendynamik von Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik hat nun erstmals einen Detektor realisiert, der das Photon beim Nachweis unversehrt lässt (Science Express, 14. November 2013).

Licht ist von fundamentaler Bedeutung. Es erlaubt uns, die Welt um uns herum zu sehen und Bilder von unserer Umgebung zu machen. Es bietet die Möglichkeit, durch optische Fasern über weite Entfernungen zu kommunizieren. Alle bislang zur Verfügung stehenden Methoden zur Detektion von Licht haben eines gemeinsam: sie beruhen auf der Absorption der Lichtquanten und damit auf ihrer Zerstörung.


Mit einem einzelnen, in einem optischen Resonator gefangenen Atom kann ein einzelnes Photon zerstörungsfrei nachgewiesen werden. MPQ, Abteilung Quanten-Dynamik

Seit langem träumen Wissenschaftler davon, einzelne Photonen vorbeifliegen zu sehen, ohne sie dabei zu absorbieren. Ein Team aus der Abteilung Quantendynamik von Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik hat nun erstmals einen Detektor realisiert, der das Photon beim Nachweis unversehrt lässt (Science Express, 14. November 2013).

In ihrem Experiment wird das ankommende Photon an einem optischen Resonator reflektiert. In dessen Zentrum befindet sich ein einzelnes Atom, das sich in einer Überlagerung aus zwei Zuständen befindet. Durch die Reflexion erfährt diese Überlagerung eine Phasenänderung, deren Messung die Existenz des Photons nachweist. Die neue Methode eröffnet die Perspektive, die Nachweiseffizienz für einzelne Lichtquanten erheblich zu steigern. Darüber hinaus hat sie große Bedeutung für alle Experimente, die Photonen für die Kodierung und Kommunikation von Quanteninformation nutzen.

Die zentralen Bausteine in diesem Experiment bilden ein einzelnes Rubidiumatom und ein optischer Resonator, der aus zwei hochreflektierenden Spiegeln in einem sehr kleinen Abstand besteht. Das Atom wird durch starke Lichtfelder aus drei Richtungen im Zentrum des Resonators festgehalten. Es besitzt zwei durch verschiedene Anregungsenergien charakterisierte Grundzustände. Der so aufgebaute Photonendetektor wird mit sehr schwachen Laserpulsen bestrahlt, die im Durchschnitt weniger als ein Lichtquant enthalten.

Einer der beiden Grundzustände ist sowohl gegenüber dem ankommenden Photon als auch gegenüber dem Resonator verstimmt. Hier kann das Photon zwar in den Hohlraum zwischen den Spiegeln gelangen, aber nicht mit dem Atom in Wechselwirkung treten. Aufgrund der besonderen Eigenschaften des Resonators verlässt das Photon diesen auf dem gleichen Weg, auf dem es gekommen ist. Im anderen Grundzustand ist das Atom mit dem Resonator und dem eintreffenden Photon resonant.

Hier bilden Atom und Resonator eine stark gekoppelte Einheit, die sich ganz anders als die beiden Einzelsysteme verhält. Im Gegensatz zum ersten Fall kann das Lichtquant nicht in den Resonator eindringen, sondern wird am ersten Spiegel reflektiert. In beiden Fällen wird das zerbrechliche Lichtquant reflektiert und damit nicht absorbiert und zerstört.

„Trotzdem hat das Photon seine Spur in dem Atom hinterlassen“, erklärt Andreas Reiserer, Doktorand am Experiment und Erstautor der Publikation. „Der Trick dabei ist, dass wir das Atom in einer Überlagerung beider Grundzustände präparieren. In dem Moment, in dem das Photon reflektiert wird, erfährt der resonante Zustand eine Phasenverschiebung relativ zu dem nichtresonanten. Diese Phasenverschiebung können wir aus dem Atom auslesen. So erreichen wir, dass das Photon die Detektion überlebt, und zwar ohne Änderung seiner Freiheitsgrade wie zum Beispiel seiner Pulsform oder Polarisation.“

Für die Messung der Phasenverschiebung des atomaren Zustands kommen Standardtechniken zur Anwendung. „Salopp gesprochen leuchtet das Atom auf, wenn wir es nach der Reflexion eines Photons testen“, führt Dr. Stephan Ritter aus, Wissenschaftler am Experiment. Um die Zuverlässigkeit der Methode unter Beweis zu stellen, wurden die reflektierten Photonen außerdem noch einmal mit normalen Photodetektoren nachgewiesen.

„Auf diese Weise registrieren wir das Photon zweimal, was allein mit auf Absorption beruhenden Detektoren nicht möglich ist. Mit unserem Prototyp-Experiment erreichen wir eine Nachweiseffizienz von rund 74 %, was schon jetzt besser ist als die 60%, die typische destruktive Detektoren erreichen“, erläutert Ritter. „Der erreichte Wert ist nicht durch fundamentale Effekte beschränkt, sondern durch Unzulänglichkeiten, an deren Beseitigung wir in Zukunft arbeiten können.“

Einzelne Photonen nachweisen zu können ohne sie zu zerstören oder ihre Freiheitsgrade zu verändern ebnet den Weg für eine Reihe neuer Experimente. So kann das Photon durch die Kombination mehrerer zerstörungsfreier Geräte wiederholt nachgewiesen werden. Dadurch können einzelne Photonen in der Kommunikation und Verarbeitung von Quanteninformation weit vielseitiger als bislang genutzt werden.

Die erfolgreiche Übertragung eines Photons in einem Quantennetzwerk könnte nachgewiesen werden, ohne die darin enthaltene zerbrechliche Quanteninformation zu zerstören. Der hier geschilderte Nachweismechanismus bietet auch die Option, zwischen dem reflektierten Photon und dem einzelnen gefangenen Atom, oder sogar zwischen zwei Photonen ein deterministisches, universelles Quantengatter zu realisieren. Da Quantengatter die funktionellen Grundbausteine für einen zukünftigen Quantencomputer darstellen, ginge dann ein weiterer, lange gehegter Traum der Quantenphysiker in Erfüllung. Olivia Meyer-Streng

Originalveröffentlichung:
Andreas Reiserer, Stephan Ritter, and Gerhard Rempe
Nondestructive Detection of an Optical Photon,
Science Express, 14. November 2013, DOI: 10.1126/science.1246164
Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0) 89 / 32905 -701
Fax: +49 (0) 89 / 32905 -311
E-mMil: gerhard.rempe@mpq.mpg.de
Dr. Stephan Ritter
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 / 32905 -728
Fax: +49 (0) 89 / 32905 -395
E-Mail: stephan.ritter@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie