Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photonennachweis ohne Absorption: Wissenschaftler am MPQ können ein optisches Photon zweimal sehen

15.11.2013
Alle bislang zur Verfügung stehenden Methoden zur Detektion von Licht haben eines gemeinsam: sie beruhen auf der Absorption der Lichtquanten und damit auf ihrer Zerstörung. Ein Team aus der Abteilung Quantendynamik von Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik hat nun erstmals einen Detektor realisiert, der das Photon beim Nachweis unversehrt lässt (Science Express, 14. November 2013).

Licht ist von fundamentaler Bedeutung. Es erlaubt uns, die Welt um uns herum zu sehen und Bilder von unserer Umgebung zu machen. Es bietet die Möglichkeit, durch optische Fasern über weite Entfernungen zu kommunizieren. Alle bislang zur Verfügung stehenden Methoden zur Detektion von Licht haben eines gemeinsam: sie beruhen auf der Absorption der Lichtquanten und damit auf ihrer Zerstörung.


Mit einem einzelnen, in einem optischen Resonator gefangenen Atom kann ein einzelnes Photon zerstörungsfrei nachgewiesen werden. MPQ, Abteilung Quanten-Dynamik

Seit langem träumen Wissenschaftler davon, einzelne Photonen vorbeifliegen zu sehen, ohne sie dabei zu absorbieren. Ein Team aus der Abteilung Quantendynamik von Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik hat nun erstmals einen Detektor realisiert, der das Photon beim Nachweis unversehrt lässt (Science Express, 14. November 2013).

In ihrem Experiment wird das ankommende Photon an einem optischen Resonator reflektiert. In dessen Zentrum befindet sich ein einzelnes Atom, das sich in einer Überlagerung aus zwei Zuständen befindet. Durch die Reflexion erfährt diese Überlagerung eine Phasenänderung, deren Messung die Existenz des Photons nachweist. Die neue Methode eröffnet die Perspektive, die Nachweiseffizienz für einzelne Lichtquanten erheblich zu steigern. Darüber hinaus hat sie große Bedeutung für alle Experimente, die Photonen für die Kodierung und Kommunikation von Quanteninformation nutzen.

Die zentralen Bausteine in diesem Experiment bilden ein einzelnes Rubidiumatom und ein optischer Resonator, der aus zwei hochreflektierenden Spiegeln in einem sehr kleinen Abstand besteht. Das Atom wird durch starke Lichtfelder aus drei Richtungen im Zentrum des Resonators festgehalten. Es besitzt zwei durch verschiedene Anregungsenergien charakterisierte Grundzustände. Der so aufgebaute Photonendetektor wird mit sehr schwachen Laserpulsen bestrahlt, die im Durchschnitt weniger als ein Lichtquant enthalten.

Einer der beiden Grundzustände ist sowohl gegenüber dem ankommenden Photon als auch gegenüber dem Resonator verstimmt. Hier kann das Photon zwar in den Hohlraum zwischen den Spiegeln gelangen, aber nicht mit dem Atom in Wechselwirkung treten. Aufgrund der besonderen Eigenschaften des Resonators verlässt das Photon diesen auf dem gleichen Weg, auf dem es gekommen ist. Im anderen Grundzustand ist das Atom mit dem Resonator und dem eintreffenden Photon resonant.

Hier bilden Atom und Resonator eine stark gekoppelte Einheit, die sich ganz anders als die beiden Einzelsysteme verhält. Im Gegensatz zum ersten Fall kann das Lichtquant nicht in den Resonator eindringen, sondern wird am ersten Spiegel reflektiert. In beiden Fällen wird das zerbrechliche Lichtquant reflektiert und damit nicht absorbiert und zerstört.

„Trotzdem hat das Photon seine Spur in dem Atom hinterlassen“, erklärt Andreas Reiserer, Doktorand am Experiment und Erstautor der Publikation. „Der Trick dabei ist, dass wir das Atom in einer Überlagerung beider Grundzustände präparieren. In dem Moment, in dem das Photon reflektiert wird, erfährt der resonante Zustand eine Phasenverschiebung relativ zu dem nichtresonanten. Diese Phasenverschiebung können wir aus dem Atom auslesen. So erreichen wir, dass das Photon die Detektion überlebt, und zwar ohne Änderung seiner Freiheitsgrade wie zum Beispiel seiner Pulsform oder Polarisation.“

Für die Messung der Phasenverschiebung des atomaren Zustands kommen Standardtechniken zur Anwendung. „Salopp gesprochen leuchtet das Atom auf, wenn wir es nach der Reflexion eines Photons testen“, führt Dr. Stephan Ritter aus, Wissenschaftler am Experiment. Um die Zuverlässigkeit der Methode unter Beweis zu stellen, wurden die reflektierten Photonen außerdem noch einmal mit normalen Photodetektoren nachgewiesen.

„Auf diese Weise registrieren wir das Photon zweimal, was allein mit auf Absorption beruhenden Detektoren nicht möglich ist. Mit unserem Prototyp-Experiment erreichen wir eine Nachweiseffizienz von rund 74 %, was schon jetzt besser ist als die 60%, die typische destruktive Detektoren erreichen“, erläutert Ritter. „Der erreichte Wert ist nicht durch fundamentale Effekte beschränkt, sondern durch Unzulänglichkeiten, an deren Beseitigung wir in Zukunft arbeiten können.“

Einzelne Photonen nachweisen zu können ohne sie zu zerstören oder ihre Freiheitsgrade zu verändern ebnet den Weg für eine Reihe neuer Experimente. So kann das Photon durch die Kombination mehrerer zerstörungsfreier Geräte wiederholt nachgewiesen werden. Dadurch können einzelne Photonen in der Kommunikation und Verarbeitung von Quanteninformation weit vielseitiger als bislang genutzt werden.

Die erfolgreiche Übertragung eines Photons in einem Quantennetzwerk könnte nachgewiesen werden, ohne die darin enthaltene zerbrechliche Quanteninformation zu zerstören. Der hier geschilderte Nachweismechanismus bietet auch die Option, zwischen dem reflektierten Photon und dem einzelnen gefangenen Atom, oder sogar zwischen zwei Photonen ein deterministisches, universelles Quantengatter zu realisieren. Da Quantengatter die funktionellen Grundbausteine für einen zukünftigen Quantencomputer darstellen, ginge dann ein weiterer, lange gehegter Traum der Quantenphysiker in Erfüllung. Olivia Meyer-Streng

Originalveröffentlichung:
Andreas Reiserer, Stephan Ritter, and Gerhard Rempe
Nondestructive Detection of an Optical Photon,
Science Express, 14. November 2013, DOI: 10.1126/science.1246164
Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0) 89 / 32905 -701
Fax: +49 (0) 89 / 32905 -311
E-mMil: gerhard.rempe@mpq.mpg.de
Dr. Stephan Ritter
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 / 32905 -728
Fax: +49 (0) 89 / 32905 -395
E-Mail: stephan.ritter@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen