Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Phasenuhr“ als hochpräzise Atomwaage

19.02.2013
Die Frequenz, mit der ein einzelnes Ion im Magnetfeld einer Penningfalle kreist, bietet bislang den genauesten Zugang zu Kernmassen kurzlebiger Isotope.

Physiker des MPI für Kernphysik Heidelberg und der Universität Greifswald haben nun am GSI Helmholtzzentrum Darmstadt die Kreisbewegung des Ions selbst abgebildet, die gleich dem Sekundenzeiger einer Uhr die Genauigkeit der Messungen steigert. Damit lässt sich die erforderliche Messzeit für instabile Nuklide deutlich verkürzen [Physical Review Letters, 19.02.2013 online].


Abb.1: Schematischer Aufbau der SHIPTRAP-Falle mit ortsauflösendem Detektor zu Abbildung der Kreisbewegung des Ions.
Detailfoto oben: G. Otto / GSI Helmholtzzentrum für Schwerionenforschung, Grafik: MPI für Kernphysik


Abb.2: Abbildung der Kreisbewegung des Ions auf dem Detektor („Phasenuhr“) für verschiedene Stoppzeiten. Das Bild setzt sich aus einer großen Zahl von Einzelmessungen zusammen, die innerhalb weniger Minuten aufgenommen werden können. Die Umlaufzeit des Ions beträgt etwa 1 Mikrosekunde.
Grafik: MPI für Kernphysik

Präzisionsmessungen der Masse von Atomkernen haben in den letzten Jahren erheblich an Bedeutung für viele grundlegende Fragen der Physik gewonnen. Ein wichtiger Aspekt ist dabei die Bindungsenergie und damit verbunden die Stabilität der Kerne. Die Verbindung von Masse und Energie liefert Einsteins bekannte Formel E = m*c^2. Für einen Atomkern bedeutet dies, dass das Ganze weniger ist als die Summe seiner Teile: Der Kern hat eine etwas geringere Masse als die Summe der Massen seiner einzelnen Bestandteile, Protonen und Neutronen. Über die Bestimmung dieser Massendifferenz bekommt man also direkt die Bindungsenergie des Atomkerns, die von großer Bedeutung ist für beispielsweise Untersuchungen zur Entstehung der Elemente im Universum oder die Stabilität superschwere Elemente.

Eine besondere Herausforderung stellt die Massenmessung radioaktiver, also instabiler Nuklide dar, denn sie zerfallen oft kaum einen Wimpernschlag nach ihrer Erzeugung schon wieder. Untersuchen kann man sie daher nur an speziellen Beschleunigereinrichtungen, wo sie produziert werden. Und auch danach muss es entsprechend schnell gehen:

Eine etablierte Technik ist der Einfang und die Speicherung instabiler Nuklide in Form einzelner Ionen in so genannten Penningfallen, wie sie in der Gruppe um Klaus Blaum am Heidelberger MPI für Kernphysik betrieben werden. Hier kreist das Ion in einem starken Magnetfeld und wird zusätzlich durch eine positive Spannung an zwei gegenüberliegenden Elektroden am Entweichen in Richtung der Achse der Kreisbewegung gehindert (Abb. 1). Letztere ist durch die Zyklotronfrequenz eines geladenen Teilchens im Magnetfeld charakterisiert. Diese ist umgekehrt proportional zur Masse des Teilchens.

Zur Bestimmung der Frequenz bleibt bei kurzlebigen Nukliden wenig Zeit. Die Forscher verstärken daher zunächst mit einem elektrischen Hochfrequenzfeld die Kreisbewegung des Ions und lassen es dann durch Herunterschalten der Fallenspannung frei durch das Vakuum auf einen Detektor fliegen. Aus der Flugzeit lässt sich dann die Bewegungsenergie bestimmen. Der Verstärkungseffekt ist am größten, wenn die Hochfrequenz mit der Zyklotronfrequenz übereinstimmt, also Resonanz vorliegt. Die mit dieser bisher verwendeten Methode erzielte Genauigkeit liegt für Isotope mit wenigen 10-100 ms Halbwertszeit nun in der Größenordnung eines halben Umlaufs – vergleichbar mit dem Minutenzeiger einer Uhr, wenn ein Umlauf einer Minute entspricht. Genauere Uhren sind mit einem Sekundenzeiger ausgestattet. Diese Rolle übernimmt nun im Experiment das kreisende Ion selbst, man muss nur seine ‚Zeigerstellung‘ – die Physiker sprechen hier von der Phase der Kreisbewegung – abbilden.

Diese Idee haben nun die Heidelberger Physiker in Zusammenarbeit mit Kollegen der Universität Greifswald am GSI Helmholtzzentrum Darmstadt umgesetzt. Sie lassen das Ion nach Anregung durch einen Hochfrequenzpuls (Start) zunächst einige Zehntelsekunden kreisen und bilden es dann auf einen ortsempfindlichen Detektor ab (Stopp). Abb. 2 zeigt das ‚Zifferblatt‘ auf dem Detektor für verschiedene Stoppzeitpunkte. Auf diese Weise können auch kleine relative Massendifferenzen sichtbar gemacht werden. Wie bei zwei Uhren, die ein klein wenig unterschiedlich schnell gehen, vergrößert sich im Laufe der Zeit der Zeigerabstand (Phasenwinkel). Dies führt zu einer 40-fach besseren Auflösung und einer bis zu fünfmal höheren Genauigkeit – ein Durchbruch in der Präzisions-Massenspektrometrie. Mit der neuen Methode kann man daher Massen bei gleicher Genauigkeit 25 mal schneller messen. Zur Demonstration untersuchten die Forscher zwei Xenon-Isotope mit den Massenzahlen 129 und 130 mit der SHIPTRAP-Apparatur an GSI Helmholtzzentrum Darmstadt und erreichten innerhalb weniger Minuten relative Massengenauigkeiten auf die neunte Nachkommastelle.

Originalveröffentlichung:
Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclides
S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013)
Kontakt:
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik Heidelberg
Tel.: 06221 516-850
E-Mail: klaus.blaum@mpi-hd.mpg.de
Dr. Sergey Eliseev
Max-Planck-Institut für Kernphysik Heidelberg
Tel.: 06221 516-670
E-Mail: sergey.eliseev@mpi-hd.mpg.de
Prof. Dr. Lutz Schweikhard
Ernst-Moritz-Arndt Universität Greifswald
Tel.: 03834 86-4700/4750
E-Mail: lschweik@uni-greifswald.de
SHIPTRAP-Kollaborationssprecher Dr. Michael Block
GSI Helmholtzzentrum für Schwerionenforschung Darmstadt
Tel.: 06159 71-2845
E-Mail: m.block@gsi.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.110.082501
Originalveröffentlichung
http://www.mpi-hd.mpg.de/blaum/index.de.html
Abteilung Blaum am MPIK
http://www6.physik.uni-greifswald.de/
Arbeitsgruppe Atom- und Molekülphysik an der Universität Greifswald
https://www.gsi.de/start/forschung/forschungsfelder/appa_pni_gesundheit/
atomphysik/forschung/experimentieranlagen/shiptrap.htm
SHIPTRAP an der GSI

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise