Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Phasenuhr“ als hochpräzise Atomwaage

19.02.2013
Die Frequenz, mit der ein einzelnes Ion im Magnetfeld einer Penningfalle kreist, bietet bislang den genauesten Zugang zu Kernmassen kurzlebiger Isotope.

Physiker des MPI für Kernphysik Heidelberg und der Universität Greifswald haben nun am GSI Helmholtzzentrum Darmstadt die Kreisbewegung des Ions selbst abgebildet, die gleich dem Sekundenzeiger einer Uhr die Genauigkeit der Messungen steigert. Damit lässt sich die erforderliche Messzeit für instabile Nuklide deutlich verkürzen [Physical Review Letters, 19.02.2013 online].


Abb.1: Schematischer Aufbau der SHIPTRAP-Falle mit ortsauflösendem Detektor zu Abbildung der Kreisbewegung des Ions.
Detailfoto oben: G. Otto / GSI Helmholtzzentrum für Schwerionenforschung, Grafik: MPI für Kernphysik


Abb.2: Abbildung der Kreisbewegung des Ions auf dem Detektor („Phasenuhr“) für verschiedene Stoppzeiten. Das Bild setzt sich aus einer großen Zahl von Einzelmessungen zusammen, die innerhalb weniger Minuten aufgenommen werden können. Die Umlaufzeit des Ions beträgt etwa 1 Mikrosekunde.
Grafik: MPI für Kernphysik

Präzisionsmessungen der Masse von Atomkernen haben in den letzten Jahren erheblich an Bedeutung für viele grundlegende Fragen der Physik gewonnen. Ein wichtiger Aspekt ist dabei die Bindungsenergie und damit verbunden die Stabilität der Kerne. Die Verbindung von Masse und Energie liefert Einsteins bekannte Formel E = m*c^2. Für einen Atomkern bedeutet dies, dass das Ganze weniger ist als die Summe seiner Teile: Der Kern hat eine etwas geringere Masse als die Summe der Massen seiner einzelnen Bestandteile, Protonen und Neutronen. Über die Bestimmung dieser Massendifferenz bekommt man also direkt die Bindungsenergie des Atomkerns, die von großer Bedeutung ist für beispielsweise Untersuchungen zur Entstehung der Elemente im Universum oder die Stabilität superschwere Elemente.

Eine besondere Herausforderung stellt die Massenmessung radioaktiver, also instabiler Nuklide dar, denn sie zerfallen oft kaum einen Wimpernschlag nach ihrer Erzeugung schon wieder. Untersuchen kann man sie daher nur an speziellen Beschleunigereinrichtungen, wo sie produziert werden. Und auch danach muss es entsprechend schnell gehen:

Eine etablierte Technik ist der Einfang und die Speicherung instabiler Nuklide in Form einzelner Ionen in so genannten Penningfallen, wie sie in der Gruppe um Klaus Blaum am Heidelberger MPI für Kernphysik betrieben werden. Hier kreist das Ion in einem starken Magnetfeld und wird zusätzlich durch eine positive Spannung an zwei gegenüberliegenden Elektroden am Entweichen in Richtung der Achse der Kreisbewegung gehindert (Abb. 1). Letztere ist durch die Zyklotronfrequenz eines geladenen Teilchens im Magnetfeld charakterisiert. Diese ist umgekehrt proportional zur Masse des Teilchens.

Zur Bestimmung der Frequenz bleibt bei kurzlebigen Nukliden wenig Zeit. Die Forscher verstärken daher zunächst mit einem elektrischen Hochfrequenzfeld die Kreisbewegung des Ions und lassen es dann durch Herunterschalten der Fallenspannung frei durch das Vakuum auf einen Detektor fliegen. Aus der Flugzeit lässt sich dann die Bewegungsenergie bestimmen. Der Verstärkungseffekt ist am größten, wenn die Hochfrequenz mit der Zyklotronfrequenz übereinstimmt, also Resonanz vorliegt. Die mit dieser bisher verwendeten Methode erzielte Genauigkeit liegt für Isotope mit wenigen 10-100 ms Halbwertszeit nun in der Größenordnung eines halben Umlaufs – vergleichbar mit dem Minutenzeiger einer Uhr, wenn ein Umlauf einer Minute entspricht. Genauere Uhren sind mit einem Sekundenzeiger ausgestattet. Diese Rolle übernimmt nun im Experiment das kreisende Ion selbst, man muss nur seine ‚Zeigerstellung‘ – die Physiker sprechen hier von der Phase der Kreisbewegung – abbilden.

Diese Idee haben nun die Heidelberger Physiker in Zusammenarbeit mit Kollegen der Universität Greifswald am GSI Helmholtzzentrum Darmstadt umgesetzt. Sie lassen das Ion nach Anregung durch einen Hochfrequenzpuls (Start) zunächst einige Zehntelsekunden kreisen und bilden es dann auf einen ortsempfindlichen Detektor ab (Stopp). Abb. 2 zeigt das ‚Zifferblatt‘ auf dem Detektor für verschiedene Stoppzeitpunkte. Auf diese Weise können auch kleine relative Massendifferenzen sichtbar gemacht werden. Wie bei zwei Uhren, die ein klein wenig unterschiedlich schnell gehen, vergrößert sich im Laufe der Zeit der Zeigerabstand (Phasenwinkel). Dies führt zu einer 40-fach besseren Auflösung und einer bis zu fünfmal höheren Genauigkeit – ein Durchbruch in der Präzisions-Massenspektrometrie. Mit der neuen Methode kann man daher Massen bei gleicher Genauigkeit 25 mal schneller messen. Zur Demonstration untersuchten die Forscher zwei Xenon-Isotope mit den Massenzahlen 129 und 130 mit der SHIPTRAP-Apparatur an GSI Helmholtzzentrum Darmstadt und erreichten innerhalb weniger Minuten relative Massengenauigkeiten auf die neunte Nachkommastelle.

Originalveröffentlichung:
Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclides
S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013)
Kontakt:
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik Heidelberg
Tel.: 06221 516-850
E-Mail: klaus.blaum@mpi-hd.mpg.de
Dr. Sergey Eliseev
Max-Planck-Institut für Kernphysik Heidelberg
Tel.: 06221 516-670
E-Mail: sergey.eliseev@mpi-hd.mpg.de
Prof. Dr. Lutz Schweikhard
Ernst-Moritz-Arndt Universität Greifswald
Tel.: 03834 86-4700/4750
E-Mail: lschweik@uni-greifswald.de
SHIPTRAP-Kollaborationssprecher Dr. Michael Block
GSI Helmholtzzentrum für Schwerionenforschung Darmstadt
Tel.: 06159 71-2845
E-Mail: m.block@gsi.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.110.082501
Originalveröffentlichung
http://www.mpi-hd.mpg.de/blaum/index.de.html
Abteilung Blaum am MPIK
http://www6.physik.uni-greifswald.de/
Arbeitsgruppe Atom- und Molekülphysik an der Universität Greifswald
https://www.gsi.de/start/forschung/forschungsfelder/appa_pni_gesundheit/
atomphysik/forschung/experimentieranlagen/shiptrap.htm
SHIPTRAP an der GSI

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gefangen in Ruhelosigkeit
31.07.2015 | Max-Planck-Institut für Quantenoptik

nachricht Rosetta-Mission: Hinweise auf außerirdischen Ursprung des Lebens verdichten sich
31.07.2015 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gefangen in Ruhelosigkeit

Mit ultrakalten Atomen lässt sich ein neuer Materiezustand beobachten, in dem das System nicht ins thermische Gleichgewicht kommt.

Was passiert, wenn man kaltes und heißes Wasser mischt? Nach einer Weile ist das Wasser lauwarm – das System hat ein neues thermisches Gleichgewicht erreicht....

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: Superschneller Wellenritt im Kristall: Elektronik auf Zeitskala einzelner Lichtschwingungen möglich

Physikern der Universitäten Regensburg und Marburg ist es gelungen, die von einem starken Lichtfeld getriebene Bewegung von Elektronen in einem Halbleiter in extremer Zeitlupe zu beobachten. Dabei konnten sie ein grundlegend neues Quantenphänomen entschlüsseln. Die Ergebnisse der Wissenschaftler sind jetzt in der renommierten Fachzeitschrift „Nature“ veröffentlicht worden (DOI: 10.1038/nature14652).

Die rasante Entwicklung in der Elektronik mit Taktraten bis in den Gigahertz-Bereich hat unser Alltagsleben revolutioniert. Sie stellt jedoch auch Forscher...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Erster Nachweis von Lithium in einem explodierenden Stern

Erstmals konnte das chemische Element Lithium in der ausgestoßenen Materie einer Nova nachgewiesen werden. Beobachtungen von Nova Centauri 2013 mit Teleskopen des La Silla-Observatoriums der ESO und in der Nähe von Santiago de Chile helfen bei der Aufklärung des Rätsels, warum so viele junge Sterne mehr von diesem Element enthalten als erwartet. Diese Entdeckung liefert ein seit langem fehlendes Teil im Puzzle der chemischen Entwicklungsgeschichte unserer Galaxie und ist ein großer Fortschritt für das Verständnis des Mischungsverhältnisses der chemischen Elemente in den Sternen unserer Milchstraße.

Das leichte chemische Element Lithium ist eines der wenigen Elemente, das nach unserer Modellvorstellung auch beim Urknall vor 13,8 Milliarden Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Türme und Maste aus Stahl – Neues aus Forschung und Anwendung

31.07.2015 | Veranstaltungen

Tagung „Brandschutz im Tank- und Gefahrgutlager“ am 16. November 2015 im Essener Haus der Technik stellt praktische Lösungen vor

30.07.2015 | Veranstaltungen

12. BMBF-Forum für Nachhaltigkeit: Green Economy, Energiewende und die Zukunft der Städte

30.07.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wiederaufladbare Batterien machen sich breit

31.07.2015 | Seminare Workshops

Alles zur Kryotechnik: HDT bietet Seminar zum „Kryostatbau“ an

31.07.2015 | Seminare Workshops

Erster Zug von Siemens für Thameslink‑Strecke in UK angekommen

31.07.2015 | Verkehr Logistik