Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Phasenuhr“ als hochpräzise Atomwaage

19.02.2013
Die Frequenz, mit der ein einzelnes Ion im Magnetfeld einer Penningfalle kreist, bietet bislang den genauesten Zugang zu Kernmassen kurzlebiger Isotope.

Physiker des MPI für Kernphysik Heidelberg und der Universität Greifswald haben nun am GSI Helmholtzzentrum Darmstadt die Kreisbewegung des Ions selbst abgebildet, die gleich dem Sekundenzeiger einer Uhr die Genauigkeit der Messungen steigert. Damit lässt sich die erforderliche Messzeit für instabile Nuklide deutlich verkürzen [Physical Review Letters, 19.02.2013 online].


Abb.1: Schematischer Aufbau der SHIPTRAP-Falle mit ortsauflösendem Detektor zu Abbildung der Kreisbewegung des Ions.
Detailfoto oben: G. Otto / GSI Helmholtzzentrum für Schwerionenforschung, Grafik: MPI für Kernphysik


Abb.2: Abbildung der Kreisbewegung des Ions auf dem Detektor („Phasenuhr“) für verschiedene Stoppzeiten. Das Bild setzt sich aus einer großen Zahl von Einzelmessungen zusammen, die innerhalb weniger Minuten aufgenommen werden können. Die Umlaufzeit des Ions beträgt etwa 1 Mikrosekunde.
Grafik: MPI für Kernphysik

Präzisionsmessungen der Masse von Atomkernen haben in den letzten Jahren erheblich an Bedeutung für viele grundlegende Fragen der Physik gewonnen. Ein wichtiger Aspekt ist dabei die Bindungsenergie und damit verbunden die Stabilität der Kerne. Die Verbindung von Masse und Energie liefert Einsteins bekannte Formel E = m*c^2. Für einen Atomkern bedeutet dies, dass das Ganze weniger ist als die Summe seiner Teile: Der Kern hat eine etwas geringere Masse als die Summe der Massen seiner einzelnen Bestandteile, Protonen und Neutronen. Über die Bestimmung dieser Massendifferenz bekommt man also direkt die Bindungsenergie des Atomkerns, die von großer Bedeutung ist für beispielsweise Untersuchungen zur Entstehung der Elemente im Universum oder die Stabilität superschwere Elemente.

Eine besondere Herausforderung stellt die Massenmessung radioaktiver, also instabiler Nuklide dar, denn sie zerfallen oft kaum einen Wimpernschlag nach ihrer Erzeugung schon wieder. Untersuchen kann man sie daher nur an speziellen Beschleunigereinrichtungen, wo sie produziert werden. Und auch danach muss es entsprechend schnell gehen:

Eine etablierte Technik ist der Einfang und die Speicherung instabiler Nuklide in Form einzelner Ionen in so genannten Penningfallen, wie sie in der Gruppe um Klaus Blaum am Heidelberger MPI für Kernphysik betrieben werden. Hier kreist das Ion in einem starken Magnetfeld und wird zusätzlich durch eine positive Spannung an zwei gegenüberliegenden Elektroden am Entweichen in Richtung der Achse der Kreisbewegung gehindert (Abb. 1). Letztere ist durch die Zyklotronfrequenz eines geladenen Teilchens im Magnetfeld charakterisiert. Diese ist umgekehrt proportional zur Masse des Teilchens.

Zur Bestimmung der Frequenz bleibt bei kurzlebigen Nukliden wenig Zeit. Die Forscher verstärken daher zunächst mit einem elektrischen Hochfrequenzfeld die Kreisbewegung des Ions und lassen es dann durch Herunterschalten der Fallenspannung frei durch das Vakuum auf einen Detektor fliegen. Aus der Flugzeit lässt sich dann die Bewegungsenergie bestimmen. Der Verstärkungseffekt ist am größten, wenn die Hochfrequenz mit der Zyklotronfrequenz übereinstimmt, also Resonanz vorliegt. Die mit dieser bisher verwendeten Methode erzielte Genauigkeit liegt für Isotope mit wenigen 10-100 ms Halbwertszeit nun in der Größenordnung eines halben Umlaufs – vergleichbar mit dem Minutenzeiger einer Uhr, wenn ein Umlauf einer Minute entspricht. Genauere Uhren sind mit einem Sekundenzeiger ausgestattet. Diese Rolle übernimmt nun im Experiment das kreisende Ion selbst, man muss nur seine ‚Zeigerstellung‘ – die Physiker sprechen hier von der Phase der Kreisbewegung – abbilden.

Diese Idee haben nun die Heidelberger Physiker in Zusammenarbeit mit Kollegen der Universität Greifswald am GSI Helmholtzzentrum Darmstadt umgesetzt. Sie lassen das Ion nach Anregung durch einen Hochfrequenzpuls (Start) zunächst einige Zehntelsekunden kreisen und bilden es dann auf einen ortsempfindlichen Detektor ab (Stopp). Abb. 2 zeigt das ‚Zifferblatt‘ auf dem Detektor für verschiedene Stoppzeitpunkte. Auf diese Weise können auch kleine relative Massendifferenzen sichtbar gemacht werden. Wie bei zwei Uhren, die ein klein wenig unterschiedlich schnell gehen, vergrößert sich im Laufe der Zeit der Zeigerabstand (Phasenwinkel). Dies führt zu einer 40-fach besseren Auflösung und einer bis zu fünfmal höheren Genauigkeit – ein Durchbruch in der Präzisions-Massenspektrometrie. Mit der neuen Methode kann man daher Massen bei gleicher Genauigkeit 25 mal schneller messen. Zur Demonstration untersuchten die Forscher zwei Xenon-Isotope mit den Massenzahlen 129 und 130 mit der SHIPTRAP-Apparatur an GSI Helmholtzzentrum Darmstadt und erreichten innerhalb weniger Minuten relative Massengenauigkeiten auf die neunte Nachkommastelle.

Originalveröffentlichung:
Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclides
S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013)
Kontakt:
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik Heidelberg
Tel.: 06221 516-850
E-Mail: klaus.blaum@mpi-hd.mpg.de
Dr. Sergey Eliseev
Max-Planck-Institut für Kernphysik Heidelberg
Tel.: 06221 516-670
E-Mail: sergey.eliseev@mpi-hd.mpg.de
Prof. Dr. Lutz Schweikhard
Ernst-Moritz-Arndt Universität Greifswald
Tel.: 03834 86-4700/4750
E-Mail: lschweik@uni-greifswald.de
SHIPTRAP-Kollaborationssprecher Dr. Michael Block
GSI Helmholtzzentrum für Schwerionenforschung Darmstadt
Tel.: 06159 71-2845
E-Mail: m.block@gsi.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.110.082501
Originalveröffentlichung
http://www.mpi-hd.mpg.de/blaum/index.de.html
Abteilung Blaum am MPIK
http://www6.physik.uni-greifswald.de/
Arbeitsgruppe Atom- und Molekülphysik an der Universität Greifswald
https://www.gsi.de/start/forschung/forschungsfelder/appa_pni_gesundheit/
atomphysik/forschung/experimentieranlagen/shiptrap.htm
SHIPTRAP an der GSI

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Geheimnis des Weltrekordmaterials Eisen-Antimonid gelüftet
30.06.2015 | Technische Universität Wien

nachricht Metallischer Wasserstoff und Helium-Regen in Saturn
29.06.2015 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Flugzeugflügel reparieren Risse von selbst

Prozess basiert auf Kohlefasern, die bei Schäden sofort aktiv werden

Forscher der University of Bristol http://bris.ac.uk haben Flugzeugflügel entwickelt, die sich im Falle eines Schadens selbst reparieren können. Als...

Im Focus: Aktuatoren – bewegt wie die Mittagsblume

Materialien nach dem Vorbild mancher Pflanzen könnten Robotern künftig zu natürlichen Bewegungen verhelfen

Wenn Ingenieure bewegliche Komponenten von Robotern entwickeln, können sie sich demnächst vielleicht der Kniffe von Pflanzen bedienen. Forscher des...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Tausende von Tröpfchen für die Diagnostik

Forscher entwickeln neue Methode, mit der sie DNA-Moleküle in nur 30 Minuten zählen können

Wissenschaftler um Doktorand Friedrich Schuler von der Professur für Anwendungsentwicklung am Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

VDE-Tagung zeigt Trends in der Simulation und Miniaturisierung

30.06.2015 | Veranstaltungen

Personal neu denken

30.06.2015 | Veranstaltungen

Wissenschaftlicher Kongress zum Zahnärztetag 2015: Spannung pur durch kollegiales Disputie

30.06.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Geheimnis des Weltrekordmaterials Eisen-Antimonid gelüftet

30.06.2015 | Physik Astronomie

Wenn Tumore wiederkehren

30.06.2015 | Biowissenschaften Chemie

340 Krater fehlen noch

30.06.2015 | Geowissenschaften