Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organische Metalle im Blitzlicht

26.06.2012
Organische Kristalle können unter bestimmten Umständen überraschende Eigenschaften zeigen: Mal sind sie Isolator, mal leiten sie hervorragend elektrischen Strom. Was dabei auf atomarer Ebene geschieht, untersuchen Physiker aus Würzburg, Bayreuth und Südafrika in einem neuen gemeinsamen Projekt.

Ein zentrales Kupferatom umgeben von vier organischen Molekülen: Wie ein Kleeblatt muss man sich die Kristallbausteine vorstellen, mit denen Professor Jens Pflaum arbeitet. Der Physiker forscht am Lehrstuhl für Experimentelle Physik VI der Universität Würzburg. Gemeinsam mit Kollegen der Universitäten Bayreuth und Stellenbosch in Südafrika will er in den kommenden Jahren untersuchen, wie die Kristalle zu ihren überraschenden Eigenschaften kommen und wie schnell diese Schaltvorgänge ablaufen. Die Deutsche Forschungsgemeinschaft fördert das Projekt.

Forschung an organischen Halbleitern

„Die untersuchten Kristalle gehören zu der Klasse der eindimensionalen organischen Metalle“, sagt Jens Pflaum. Das bedeutet: Bei Raumtemperatur verhalten sie sich in einer Richtung metallisch und leiten Strom. In den Richtungen senkrecht dazu zeigen sie hingegen die Eigenschaften eines Isolators. Noch erstaunlicher wird ihr Verhalten, wenn man sie tiefen Temperaturen aussetzt: „Bei minus 210 Grad Celsius wird aus dem Metall ein Isolator. Und nochmals 30 Grad Celsius tiefer dreht sich der Prozess erneut um. Dann wird aus dem Isolator wieder ein Metall“, erklärt Jens Pflaum. Von „Re-Entry“ sprechen die Physiker in letzterem Fall. Fast so gut wie ein Kupferdraht leiten die organischen Kristalle mit dem Namen „Kupfer-DCNQI“ dann den Strom, obwohl der Elektronentransport nicht über die Kupferatome stattfindet, sondern über die organischen Moleküle.

Und noch eine Besonderheit macht den organischen Kristall für die Physiker so interessant: Bestrahlt man den tiefgekühlten Isolator mit einem Lichtblitz, schaltet er „sofort“ in den metallischen Zustand um und verbleibt in diesem für eine längere Zeit. „Die Tatsache, dass man den Isolator-Metall Übergang optisch sehr schnell schalten kann, zeichnet die organischen Metalle gegenüber anderen, nicht-organischen Verbindungen aus“, betont Jens Pflaum. Wie das Schalten funktioniert, was die Moleküle dabei machen, welche Veränderungen es in der Kristallstruktur gibt und insbesondere wie schnell diese Vorgänge ablaufen, all dies wollen die Physiker aus Würzburg, Bayreuth und Stellenbosch in dem Projekt aufklären – in der Würzburger Arbeitsgruppe der Doktorand Florian Hüwe und der Masterstudent Matthias Schmiddunser.

Komplizierte Herstellung

Damit der Wechsel vom „Metall“ zum „Isolator“ funktioniert, müssen sich die Moleküle in einer bestimmten Struktur im Kristall anordnen: Wie in einem extrem dünnen, langen Draht reiht sich dann ein Molekül hinter das andere (siehe Abbildung). Die Grundsubstanz synthetisieren Chemiker der Universität Bayreuth in Pulverform; am Physikalischen Institut der Universität Würzburg kristallisieren Jens Pflaum und seine Mitarbeiter daraus Einkristalle. Mehrere Wochen dauert es, bis ein wenige Zentimeter langer und zehntel Millimeter dicker Einkristall gewachsen ist, der in Form und Größe einem Haar ähnelt. Wochen, in denen tunlichst keine Erschütterung und kein Stromausfall das Wachstum stören dürfen. Aber die Mühe lohnt sich, das Würzburger Team ist bei der Zucht solcher „organischen Einkristalle“ international in der Spitzengruppe dabei.

Anschließend reisen die Kristallnadeln nach Südafrika, wo an der Universität Stellenbosch ein ehemaliger Würzburger Physiker mit seinen Mitarbeitern aus Europa und Afrika ein inzwischen international renommiertes Laser-Forschungslabor aufgebaut hat: Professor Heinrich Schwoerer kennt sich mit einer Technik besonders gut aus, dem Femtosekundenlaser. Mit dieser hoch entwickelten optischen Technik wollen die Forscher im wahrsten Sinne des Wortes Licht ins Dunkel der Vorgänge innerhalb der organischen Kristallstrukturen bringen.

Was beim Übergang vom Metall zum Isolator bei minus 210 Grad geschieht, ist bekannt. „Die Moleküle verschieben sich paarweise. Halten sie vorher identische Abstände zu ihren Nachbarmolekülen ein, gruppieren sich jetzt immer zwei Moleküle enger zusammen“, erklärt Jens Pflaum. Über die Dynamik der Vorgänge beim Schalten mit Licht sowie beim “Re-Entry“ Übergang gibt es bislang jedoch nur Theorien und Spekulationen. Das soll sich mit Hilfe des ultra-schnellen Laserlichts ändern. „Wir können damit das Geschehen auf extrem kurzen Zeiten darstellen“, sagen die Physiker, „diese Zeiten sind etwa so kurz wie die Schwingungszeiten der Atome in den Molekülen“.

Untersuchung mit dem Femtosekundenlaser

Femtosekundenlaser senden Lichtpulse aus, die unvorstellbar kurze 10-15 Sekunden dauern. Zur Verdeutlichung: Licht – mit einer Geschwindigkeit von 300.000 Kilometer pro Sekunde– legt in der Zeit von 100 Femtosekunden eine Strecke von 30 µm zurück, also etwa den Durchmesser eines menschlichen Haares. In Stellenbosch wird der Laser mit einem Lichtblitz gleich zwei Aufgaben erfüllen: Zum einen schaltet er das Material optisch um – vom Isolator zum Metall. Zum anderen trifft er zuvor auf eine dünne Metallfolie und setzt dabei Elektronen frei. Dieser Elektronenpuls trifft kurz nach dem Lichtpuls ebenfalls auf die Kristallprobe und wird an den Atomen gebeugt. Aus den Streuwinkeln der Elektronen können die Physiker dann einen Schnappschuss von der momentanen Anordnung der Atome im Kristallgitter gewinnen – mit einer Zeitauflösung von derzeit etwa 300 Femtosekunden.

Nun würde ein einziges Bild noch nicht allzu viel darüber verraten, was in dem organischen Kristall beim Schalten passiert. Deshalb variieren die Laserexperten in ihren Experimenten die Zeitspanne, die zwischen dem Eintreffen des Lichtpulses und des Elektronenpuls vergeht, in extrem kurzen Schritten. Die vielen Einzelbilder, die sie so erhalten, ergeben zusammengesetzt eine Art Film, der die Bewegung der Atome und der Elektronen während des Umschaltens vom Isolator zum Metall genau wiedergeben soll. „Wenn das funktioniert, wäre es das erste Mal, dass man den Übergang mit dieser hohen Zeitauflösung nachweisen und seinen Mechanismus auf atomarer Skala aufklären kann“, hoffen Pflaum und seine Kollegen.

Reine Grundlagenforschung

Grundlagenforschung ist das Projekt des deutsch-südafrikanischen Teams; eine konkrete Anwendung steht zunächst nicht im Mittelpunkt der Arbeiten. Allerdings hat der „optische Schalter“ einen großen Vorteil im Vergleich zu Techniken, die mit Hilfe einer Druck- oder Temperaturveränderung den Wechsel vom Isolator zum Metall hervorrufen: Er funktioniert sehr viel schneller. Für welche Anwendung sich das zukünftig nutzen lässt, ist derzeit offen. Ein superschneller Foto-Detektor, ein rasanter Chip für Kameras: Nach Jens Pflaums Worten aktuell „noch“ reine Gedankenspiele.

Kontakt

Prof. Dr. Jens Pflaum, T: (0931) 31-83118, jpflaum@physik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungsnachrichten

Deutscher Innovationspreis für Klima und Umwelt 2017 ausgeschrieben

23.01.2017 | Förderungen Preise

Aufwind für die Luftfahrt: University of Twente entwickelt leistungsstarke Verbindungsmethode

23.01.2017 | Maschinenbau