Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem optischen Computer ein Stückchen näher

25.01.2013
Oldenburger Physiker entdecken neue nanostrukturierte metallische Lichtschalter / Ihnen könnte nach Expertenmeinung die Zukunft gehören

Computer, bei denen optische Elemente gängige elektronische Komponenten ersetzen. Einem deutsch-italienischen Forscherteam um Prof. Dr. Christoph Lienau, Physiker an der Universität Oldenburg, ist nun ein wichtiger Schritt hin zur Entwicklung optischer Schaltelemente gelungen. In der Februar-Ausgabe der renommierten Fachzeitschrift Nature Photonics berichten die Wissenschaftler über ihre neuen Forschungsergebnisse zur Realisierung ultraschneller Lichtschalter.

Konventionelle Computer basieren auf Halbleitertransistoren: In ihnen werden elektronische Ströme geschaltet, die durch hauchfeine Leiterbahnen fließen. In aktuellen Prozessoren sind diese Leiterbahnen nur wenige zehn Nanometer breit – ein Nanometer ist der Milliardste Teil eines Meters – und die Ströme werden auf einer Zeitskala von etwa einer Nanosekunde geschaltet. „Im Prinzip könnte man erhebliche schnellere Computer realisieren, wenn es gelänge, Licht statt Elektronen in solche Leiterbahnen einzusperren und zu schalten“, erläutert Lienau. Solche „optischen Computer“ existieren bislang nur als Vision von WissenschaftlerInnen. Unter anderem deshalb, weil es enorm schwierig ist, Licht in solch kleinen Dimensionen einzufangen.

Hier konnten Forscher in den letzten Jahren mit der Entwicklung von nanostrukturierten metallischen Lichtleitern – zum Beispiel mikroskopisch kleinen Silber- oder Golddrähte – erhebliche Fortschritte erzielen. Allerdings gelang es mit diesen metallischen Lichtleitern alleine bisher nicht, Licht auch hinreichend schnell durch Licht zu schalten.

In ihrem Beitrag in Nature Photonics beschreiben die Wissenschaftler einen neuen Lichtschalter, aufgebaut aus einem Gitter aus nanostrukturierten Golddrähten, die mit einer dünnen Schicht eines organischen Halbleiters überzogen sind. „Wenn wir solche Hybrid-Strukturen mit kurzen Lichtblitzen bestrahlen“, erklärt Prof. Dr. Parinda Vasa, ehemals Physikerin in Oldenburg, nun Hochschullehrerin am Indian Institute of Technology in Mumbai, „dann oszilliert die Lichtenergie enorm schnell zwischen Golddraht und Halbleiter. Diese sogenannten Rabi-Oszillationen führen dazu, das wir das Licht, immer wenn es im Halbleiter angekommen ist, mit einem zweiten Lichtimpuls ausschalten können.“ Die Dauer eines Schaltprozesses beträgt dabei nur wenige zehn Femtosekunden, ist also mehr als 10.000 Mal schneller als in einem elektronischen Computer.

„Wir lernen zunehmend, wie wir die Bewegung von Lichtstrahlen in kleinsten räumlichen Strukturen und auf enorm kurzen Zeitskalen effizient kontrollieren und steuern können“, sagt Lienau. Auch wenn sie die Effizienz und Lebensdauer des optischen Schalters noch erheblich verbessern müssten, würden die sich daraus ergebenden Anwendungsperspektiven immer faszinierender und „rücken zunehmend in greifbare Nähe“, so der Physiker.

Das Oldenburger Projekt wird durch die Deutsche Forschungsgemeinschaft im Rahmen des Schwerpunktsprogramms „Ultraschnelle Nanooptik“ und die deutsch-italienische Zusammenarbeit durch das Laserlab Europe Projekt der Europäischen Union gefördert.

Artikel in der Nature Photonics: doi:10.1038/nphoton.2012.340:
Parinda Vasa, Wei Wang, Robert Pomraenke, Melanie Lammers, Margherita Maiuri, Cristian Manzoni, Giulio Cerullo & Christoph Lienau: „Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates“

Weitere Informationen: Prof. Dr. Christoph Lienau, Institut für Physik, AG Ultraschnelle Nano-Optik, Tel.: 0441/798-3485, E-Mail: christoph.lienau@uni-oldenburg.de

Dr. Corinna Dahm-Brey | idw
Weitere Informationen:
http://www.uno.uni-oldenburg.de/
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.340.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie