Optische Kontrolle des Magnetismus

Magnetische Schaltvorgänge bilden die Grundlage der Informationsverarbeitung und -speicherung. Magnetische Medien speichern Daten in winzigen magnetischen Bereichen, die bisher meist durch Magnetpulse eingeschrieben werden. Lichtpulse könnten diese Aufgabe wesentlich schneller erledigen. Solche Pulse lassen sich heute schon mit einer Dauer von weniger als einer Billionstel Millisekunde (10-15 Sekunden) herstellen.

Einen entscheidenden Beitrag zum besseren Verständnis, wie sich magneto-optisches Schalten kontrollieren lässt, liefert nun ein internationales Forscherteam. Die Physiker des Forschungszentrums Jülich, des Forschungszentrums OPTIMAS in Kaiserslautern sowie der Universität von Colorado und des National Institut of Standards and Technology im US-amerikanischen Boulder berichten davon in der aktuellen Ausgabe der renommierten Fachzeitschrift „PNAS“.

Normalerweise reagieren die Elementarmagnete eines magnetischen Metalls oder einer Legierung nicht unabhängig von einander; Physiker nennen die dazu notwendige Kraft Austauschkopplung.

Sie äußert sich zum Beispiel darin, dass Eisen seine magnetischen Eigenschaften bei 768 Grad Celsius verliert, Nickel schon bei 360 Grad, eine Legierung beider Komponenten, genannt Permalloy, dagegen bei 580 Grad. Ungeklärt war bisher die Frage, ob in einer Legierung zweier magnetischer Metalle die beteiligten magnetischen Elemente auf sehr kurzen Zeitskalen unterschiedliche magnetische Eigenschaften zeigen oder ob sie sich stets synchron verhalten. Das ist nicht nur wissenschaftlich von Interesse, sondern auch für Anwendungen, denn entkoppelte Systeme reagieren schneller als gekoppelte.

Den Forschern ist es nun gelungen, ein kurzzeitig asynchrones Verhalten der beiden magnetischen Elemente Fe und Ni in Permalloy festzustellen. Sie sind überzeugt, dass diese Entdeckung wegweisend ist für zukünftige Untersuchungen der Spindynamik in komplexen magnetischen Materialien und dass es dadurch gelingen kann, magnetische Schaltvorgänge zukünftig deutlich zu beschleunigen.

Möglich wurde der Nachweis durch eine selbstentwickelte Methode, mit der die Wissenschaftler magnetische Schaltprozesse erstmals mit einer Zeitauflösung von wenigen Femtosekunden (Billionstel Millisekunden) beobachten konnten. Sie erhitzten Permalloy mit ultrakurzen Laserpulsen und zeigten, dass seine beiden Bestandteile darauf zeitlich versetzt reagieren: Das Nickel verliert erst 18 Femtosekunden nach dem Eisen seine magnetischen Eigenschaften. Der Zeitversatz entspricht dabei in etwa der Energie der oben erwähnten Austauschwechselwirkung (Energie-Zeit-Äquivalent), der wesentlichen physikalischen Ursache für den Magnetismus.

Der Versuchsaufbau ist ein so genanntes „Pump-Probe-Experiment“. Dabei lösen die Forscher die Entmagnetisierung der Probe durch einen Puls aus infrarotem Laserlicht von 25 Femtosekunden Dauer aus. Mit weiteren Pulsen aus weichem Röntgen-Licht von weniger als zehn Femtosekunden Dauer, erzeugt mit einer so genannten Hohe-Harmonischen Lichtquelle, messen sie die magnetische Reaktion, die als Spektrum mit einer CCD-Kamera ausgelesen wird. Unter Experten war zunächst strittig, ob bei einem solchen Messaufbau nicht optische Effekte die Ergebnisse verfälschen könnten. Dies konnten die Forscher aber ausschließen, wie sie kürzlich in der Fachzeitschrift Physical Review X erläuterten.

Originalveröffentlichungen:
Probing the timescale of the exchange interaction in a ferromagnetic alloy
Mathias et al.
PNAS Early Edition (EE), week of March 12, 2012
DOI: 10.1073/pnas.1201371109
Ultrafast Demagnetization Measurements Using Extreme Ultraviolet Light: Comparison of Electronic and Magnetic Contributions
Chan La-O-Vorakiat et al.
Physical Review X 2, 011005 (2012)
DOI: 10.1103/PhysRevX.2.011005
Viewpoint: Spin-Sensitive Optics
Jean-Yves Bigot
Physics 5, 11 (2012)
DOI: 10.1103/Physics.5.11
Ansprechpartner:
Prof. Dr. Claus M. Schneider, Forschungszentrum Jülich, Peter Grünberg Institut, Elektronische Eigenschaften, Tel. 02461 61-4428, E-Mail: c.m.schneider@fz-juelich.de
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich, Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de
Weitere Informationen:
Forschungszentrum Jülich: www.fz-juelich.de
TU Kaiserslautern und Forschungszentrum OPTIMAS: http://optimas.uni-kl.de/, Tel. 0631 205-2322, E-Mail: ma@physik.uni-kl.de
Dipl.-Volkswirt Thomas Jung
Leiter PR und Marketing
TU Kaiserslautern
Gottlieb-Daimler-Straße 47
67663 Kaiserslautern
Tel.: 0631/205-2049
Fax: 0631/205-3658
E-mail: thjung@verw.uni-kl.de

Media Contact

Thomas Jung TU Kaiserslautern

Weitere Informationen:

http://www.uni-kl.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bauchaortenaneurysma: Lebensbedrohliche Gefahr schneller identifizieren

Forschungslabor der Frankfurt UAS entwickelt Methoden zur Bewertung von Krankheitsverlauf und Rupturrisiko von Bauchaortenaneurysmen. Seit wenigen Wochen ist es offiziell: Die Aorta kann als eigenständiges Organ klassifiziert werden. Durch diese…

Zerstörungsfreie Qualitätskontrolle für mehr Sicherheit und Effizienz

Forscher der Westsächsischen Hochschule Zwickau (WHZ) und des Forschungs- und Transferzentrums (FTZ) e.V. haben gemeinsam mit Partnern aus der Industrie ein innovatives Analyse-System entwickelt. Die endoskopische Laser-Analysetechnik namens „EndoDetect“ ermöglicht…

Uranimmobilisierende Bakterien im Tongestein

Mikrobielle Reduktion verringert Mobilität von Uranverbindungen. Bei der Konzeption von Endlagern für hochradioaktive Abfälle in tiefen geologischen Schichten müssen verschiedene Faktoren sorgfältig berücksichtigt werden, um ihre langfristige Sicherheit zu gewährleisten….

Partner & Förderer