Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oldenburger Physiker an grundlegender Arbeit über Bose-Einstein-Kondensat beteiligt

17.02.2009
Große Anerkennung für ein Team von theoretischen Physikern aus Oldenburg und Experimentatoren aus Pisa:

Die amerikanische physikalische Gesellschaft (APS) stufte eine gemeinsam von Prof. Dr. Martin Holthaus und Dr. Andre Eckart und ihren italienischen Kollegen publizierte Arbeit mit dem Titel "Exploring dynamic localization with a Bose-Einstein condensate" (Phys. Rev. A 79, 013611, 2009) als "Highlight" ein und berichtete darüber in ihrer Serie "Physics - spotlighting exceptional research"

Der Schwingkörper eines Pendels, der über den Aufhängungspunkt des Pendels gebracht und dann losgelassen wird, fällt sofort herunter - es sei denn, das Pendel wird einer zeitperiodischen Kraft ausgesetzt, die es in der invertierten Position stabilisieren kann.

Ein ähnlicher Effekt tritt in der Quantenmechanik auf: Das Wellenpaket eines Teilchens, das sich auf einem periodischen Gitter bewegt, breitet sich normalerweise über das ganze Gitter aus - es sei denn, es wirkt eine zeitperiodische Kraft, die das Teilchen permanent an einer Stelle festhalten kann.

Dieser Effekt, der seit 22 Jahren als "dynamische Lokalisierung" theoretisch bekannt ist, konnte nun auf Anregung der Oldenburger Wissenschaftler von ihren experimentellen Partnern in Pisa mit Bose-Einstein-Kondensaten in geschüttelten optischen Gittern beobachtet werden.

Das Bose-Einstein-Kondensat, das von den kalten Atomen gebildet wird, ist eine "exotische" Form der Materie. Sie verhält sich im Vergleich zu normaler Materie ähnlich wie das Licht eines Lasers im Vergleich zu einer normalen Glühbirne. Die Oldenburger Überlegungen und ihre Umsetzung in Pisa zeigen nun, dass man diese Materieform nicht nur herstellen, sondern auch ihre Eigenschaften gezielt beeinflussen kann.

In ihrer Publikation erläutert das Team, dass diese Beobachtung einen Meilenstein auf dem Weg zu einer neuen Form des "quantum engineering" darstellt: Ein Elektron, das sich in dem periodischen Potenzial eines Kristallgitters bewegt, wird durch die berühmten Bloch-Wellen der Festkörperphysik beschrieben.

Ultrakalte Atome in geschüttelten optischen Gittern spüren dagegen die räumliche Periodizität des Gitters und die zeitliche Periodizität des Schüttelns, so dass neuartige Quantenzustände auftauchen, die von den Autoren als "raumzeitliche Bloch-Wellen" bezeichnet werden. Weil sich eine Achse von deren Gitter nicht wie üblich im Raum, sondern in der Zeit erstreckt, können diese Zustände systematisch manipuliert und kontrolliert werden, indem man z.B. einfach die Amplitude oder Frequenz des Schüttelns verändert. Diese Tatsache erklärt nicht nur die dynamische Lokalisierung, sondern könnte auch zu weiteren neuartigen Anwendungen führen.

Kontakt: Prof. Dr. Martin Holthaus, Institut für Physik, Tel.: 0441/798-3960, E-Mail: holthaus@theorie.physik.uni-oldenburg.de

Gerhard Harms | idw
Weitere Informationen:
http://www.uni-oldenburg.de
http://physics.aps.org
http://www.physik.uni-oldenburg.de/condmat

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik