Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Noch keine Spur von Dunkler Materie

15.11.2017

Eine Art von hypothetischen Elementarteilchen, aus denen die Dunkle Materie bestehen könnte, sind die sogenannten Axionen. Sollten sie existieren, würden sie sich womöglich an einer Forschungsanlage des Paul Scherrer Instituts PSI – der Quelle ultrakalter Neutronen UCN – nachweisen lassen. Ein international zusammengesetztes Forschungsteam hat nun die Messergebnisse analysiert und gezeigt: Es wurden keine Wechselwirkungen mit Axionen beobachtet. Damit ist die Existenz von Axionen zwar nicht ausgeschlossen, aber der Spielraum an Eigenschaften, die diese Teilchen haben könnten, ist nun deutlich eingeschränkt. So leisten die Experimente einen wichtigen Beitrag zur Suche nach Dunkler Materie.

Die Sterne und Galaxien des Universums beeinflussen durch ihre Anziehungskräfte gegenseitig ihre Bewegungen. Doch die Kräfte der sichtbaren Himmelskörper reichen bei Weitem nicht aus, um zu erklären, warum sich die Galaxien so bewegen, wie sie es tun. Daher postulieren Forschende die Existenz von Dunkler Materie, die einen Grossteil der Materie des Universums ausmachen soll.


Klaus Kirch, Leiter des Labors für Teilchenphysik am Paul Scherrer Institut PSI und Professor an der ETH Zürich, vor dem Herzstück des Experiments.

Foto: Paul Scherrer Institut/Markus Fischer


An den Experimenten zur Bestimmung des elektrischen Dipolmoments des Neutrons sind Forschende aus sieben Ländern beteiligt. Das Bild zeigt einen Teil des Teams vor der Forschungsanlage am PSI.

Foto: Paul Scherrer Institut/Markus Fischer

Woraus diese Dunkle Materie besteht, ist bisher aber völlig unklar. Sie ist jedenfalls nicht aus denselben Teilchen aufgebaut, aus denen die Sterne, die Erde oder wir selbst bestehen. Zugleich muss die gesamte Masse der Dunklen Materie etwa fünfmal so gross sein wie die unserer bekannten Materie, um die beobachteten Vorgänge im Universum zu erklären.

Forschende haben inzwischen zahlreiche theoretische Modelle zur Natur dieser Dunklen Materie entwickelt. Eine vielversprechende Möglichkeit ist, dass sie aus sogenannten Axionen besteht. Dabei handelt es sich um bisher hypothetische Teilchen, die bestimmte unverstandene Phänomene der Teilchenphysik erklären könnten.

Dunkle Materie am PSI nachweisen

Sollten die Axionen existieren, so würden sie sich unter bestimmten Bedingungen am Paul Scherrer Institut PSI beobachten lassen – genauer genommen an der Quelle ultrakalter Neutronen UCN, einer Forschungsanlage des Instituts. Im Rahmen einer internationalen Zusammenarbeit untersuchen hier Forschende aus sieben Ländern vor allem die Eigenschaften des Neutrons selbst – insbesondere wollen sie dessen elektrisches Dipolmoment bestimmen.

Denn das Neutron hat zwar insgesamt keine elektrische Ladung, es könnte aber ein elektrisches Dipolmoment haben. Anschaulich könnte man sich vorstellen, dass in diesem Falle der elektrisch positiv geladene Anteil in seinem Inneren ein wenig gegenüber dem negativen verschoben wäre. Die Existenz eines solchen statischen elektrischen Dipolmoments ist mit vielen aktuellen Fragestellungen der modernen Physik verknüpft – etwa der Frage, warum es im Universum mehr Materie als Antimaterie gibt.

In den Messdaten, die für die Untersuchungen des Neutrons aufgenommen worden sind, könnte sich aber auch die Existenz der Axionen zeigen. „Wir haben dafür auf einen anderen Aspekt in diesen Daten geschaut“, so Klaus Kirch, Leiter des Labors für Teilchenphysik am PSI und Professor an der ETH Zürich. „In unserem Experiment dauert eine einzelne Messung des Dipolmoments rund fünf Minuten. Um ein gutes Ergebnis für das statische Dipolmoment des Neutrons zu bekommen, führen wir diese Messung viele Male durch und bestimmen den über lange Zeit gemittelten Wert. Für die Suche nach den Axionen schauen wir dagegen, ob die Messergebnisse mit der Zeit mit einer festen Frequenz schwanken. Eine solche Oszillation wäre nämlich ein Hinweis auf eine Wechselwirkung der Neutronen mit den hypothetischen Teilchen.“

Dass sich die Axionen auf diese Art indirekt nachweisen liessen, liegt daran, dass diese nicht nur über die Gravitation mit anderer Materie wechselwirken; sie könnten zum Beispiel auch an die Gluonen koppeln, die „Klebeteilchen“, die gewissermassen das Neutron im Inneren zusammenhalten. Damit könnte die Begegnung mit einem Axion ein elektrisches Dipolmoment verursachen. Sehr salopp gesagt würden Axionen die Form des Neutrons verändern und damit die Verteilung der elektrischen Ladung in seinem Innern.

Wichtige Erkenntnis: Bisher keine Spur von Axionen

In den Messdaten des Experiments am PSI liess sich eine solche Oszillation bislang nicht nachweisen, ebenso wenig in den Daten eines Vorgängerexperiments an der Neutronenquelle ILL in Grenoble, die im Rahmen dieses Projekts ebenfalls neu ausgewertet wurden. Diese beiden Experimente sind die ersten, in denen Forschende die Kopplung von Axionen an Gluonen direkt im Labor untersucht haben. Die bisherigen Erkenntnisse über solche Kopplungen konnten nur indirekt aus astrophysikalischen Beobachtungen und kosmologischen Modellen gewonnen werden. Die neuen Labormessungen verbessern die Genauigkeit dieser früheren Ergebnisse um bis zu einen Faktor 1000 und führen dazu, dass man die Existenz von Axionen mit bestimmten Eigenschaften zuverlässig ausschliessen kann. „Damit widerlegen die Ergebnisse diejenigen physikalischen Modelle, die Axionen mit diesen Eigenschaften postulieren, und helfen so, die Vielfalt an Teilchen einzuschränken, die mögliche Kandidaten für die dunkle Materie sind“, so Kirch.

Dass das Experiment nicht alle denkbaren Arten von Axionen erfasst, hat im Wesentlichen zwei Gründe. So müssten die Axionen hinreichend stark mit den Neutronen wechselwirken, damit sich die Oszillation in den Messdaten manifestiert. Zudem dürfte ihre Masse nicht zu gross sein, weil eine hohe Masse zu einer hohen Frequenz der Oszillation führen würde, die sich angesichts der Fünf-Minuten-Schritte in den bisher durchgeführten Messungen nicht beobachten liesse.

Text: Paul Scherrer Institut/Paul Piwnicki


Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2100 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.


Kontakt/Ansprechpartner:
Prof. Dr. Klaus Kirch
Leiter des Labors für Teilchenphysik
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
E-Mail: klaus.kirch@psi.ch
Professor für Teilchenphysik
ETH Zürich, 8093 Zürich, Schweiz
E-Mail: klaus.kirch@phys.ethz.ch

Originalveröffentlichung:
Search for axion-like dark matter through nuclear spin precession in electric and magnetic fields
C. Abel, N. J. Ayres, G. Ban, et al.
Physical Review X 7, 14 November 2017
DOI: 10.1103/PhysRevX.7.041034

Weitere Informationen:

http://psi.ch/dG8f – Darstellung der Mitteilung auf der Webseite des PSI

Paul Scherrer Institut/Paul Piwnicki | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics