Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Niederenergie-Grenze des Standardmodells – Von Quarks und Gluonen zu Hadronen und Kernen

25.11.2011
Neuer Sonderforschungsbereich SFB 1044 am Institut für Kernphysik untersucht die Bildung und Zusammensetzung subatomarer Teilchen / Kooperation mit BES-III-Experiment in Peking

Die Deutsche Forschungsgemeinschaft (DFG) hat die Einrichtung eines neuen Sonderforschungsbereichs (SFB) an der Johannes Gutenberg-Universität Mainz bewilligt.

Der SFB 1044 „Die Niederenergie-Grenze des Standardmodells: Von Quarks und Gluonen zu Hadronen und Kernen“ wird sich ab Januar 2012 mit grundlegenden Fragen der subatomaren Welt befassen. Die hochpräzisen Messungen sowie theoretischen Analysen, die hierfür vorgesehen sind, werden von den Mainzer Physikern um den Elektronenbeschleuniger MAMI in Zukunft auch in Kooperation mit chinesischen Kollegen am Institute of High Energy Physics (IHEP) in Peking durchgeführt. Die Sprecher des neuen SFBs sind Univ.-Prof. Dr. Achim Denig (Experiment) und Univ.-Prof. Dr. Marc Vanderhaeghen (Theorie) vom Institut für Kernphysik der Universität Mainz.

Im Sonderforschungsbereich SFB 1044 wird die Rolle von Hadronen, also von subatomaren Teilchen, die aus Quarks und Gluonen aufgebaut sind, im Kontext der Teilchen-, Atom- und nuklearen Astrophysik besprochen. Die Hadronenphysik spielt dabei eine zentrale und verbindende Rolle, sowohl bei den höchsten als auch bei den niedrigsten Energieskalen. So ist in nahezu allen Fragestellungen der genannten Forschungsfelder der Fortschritt durch die fehlende quantitative Kenntnis der starken Wechselwirkung beschränkt. Einerseits hat die Überwindung dieser Niederenergie-Grenze des Standardmodells direkte Auswirkungen auf zentrale Fragestellungen beispielsweise der Atom- und Teilchenphysik. Andererseits werden die Präzisionsmessungen zu einem Erkenntnisgewinn bezüglich der Struktur von Hadronen führen, zum Beispiel bezüglich der Frage, wie Quarks und Gluonen sich zu Hadronen verbinden.

Konkrete physikalische Ziele des Sonderforschungsbereichs 1044 sind unter anderem eine genauere Bestimmung des anomalen magnetischen Moments des Myons, der elektromagnetischen Feinstrukturkonstanten, eine Lösung des sogenannten Proton-Radius-Puzzles sowie eine Präzisionsmessung des elektroschwachen Weinbergwinkels. Zur Erfüllung dieser Ziele wird im SFB 1044 eine strategische Kooperation zwischen dem Mainzer Mikrotron MAMI und dem Beijing Spectrometer BES-III geschlossen. Dieser innovative Ansatz, Messungen der Elektronenstreuung (MAMI) sowie der Elektron-Positron-Physik (BES-III) zu kombinieren, wird maßgeblich dazu beitragen, die Niederenergie-Grenze des Standardmodells zu überwinden.

Das Mainzer Mikrotron MAMI an der Johannes Gutenberg-Universität Mainz ist ein Teilchenbeschleuniger für hochintensive Elektronenstrahlen, der seit 1990 in Betrieb ist. Mit dem Ausbau der vierten Stufe wurde im Jahre 2007 die Energie des Strahls auf 1,6 Gigaelektronenvolt (GeV) erhöht. Der Elektronenbeschleuniger dient Wissenschaftlern aus der ganzen Welt für Experimente in der Kern- und Teilchenphysik. Er zeichnet sich durch einen scharf definierten Strahl und hohe Genauigkeit aus. Das Gerät eignet sich daher sehr gut, um Präzisionsuntersuchungen zur Struktur der Materie im subatomaren Bereich durchzuführen. Die Arbeiten im Rahmen des neuen SFB 1044 sind in das Mainzer Exzellenzcluster „Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) integriert, das sich derzeit in der abschließenden Auswahlrunde der Bundesexzellenzinitiative bewirbt.

Petra Giegerich | idw
Weitere Informationen:
http://www.kph.uni-mainz.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie