Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Niederenergie-Grenze des Standardmodells – Von Quarks und Gluonen zu Hadronen und Kernen

25.11.2011
Neuer Sonderforschungsbereich SFB 1044 am Institut für Kernphysik untersucht die Bildung und Zusammensetzung subatomarer Teilchen / Kooperation mit BES-III-Experiment in Peking

Die Deutsche Forschungsgemeinschaft (DFG) hat die Einrichtung eines neuen Sonderforschungsbereichs (SFB) an der Johannes Gutenberg-Universität Mainz bewilligt.

Der SFB 1044 „Die Niederenergie-Grenze des Standardmodells: Von Quarks und Gluonen zu Hadronen und Kernen“ wird sich ab Januar 2012 mit grundlegenden Fragen der subatomaren Welt befassen. Die hochpräzisen Messungen sowie theoretischen Analysen, die hierfür vorgesehen sind, werden von den Mainzer Physikern um den Elektronenbeschleuniger MAMI in Zukunft auch in Kooperation mit chinesischen Kollegen am Institute of High Energy Physics (IHEP) in Peking durchgeführt. Die Sprecher des neuen SFBs sind Univ.-Prof. Dr. Achim Denig (Experiment) und Univ.-Prof. Dr. Marc Vanderhaeghen (Theorie) vom Institut für Kernphysik der Universität Mainz.

Im Sonderforschungsbereich SFB 1044 wird die Rolle von Hadronen, also von subatomaren Teilchen, die aus Quarks und Gluonen aufgebaut sind, im Kontext der Teilchen-, Atom- und nuklearen Astrophysik besprochen. Die Hadronenphysik spielt dabei eine zentrale und verbindende Rolle, sowohl bei den höchsten als auch bei den niedrigsten Energieskalen. So ist in nahezu allen Fragestellungen der genannten Forschungsfelder der Fortschritt durch die fehlende quantitative Kenntnis der starken Wechselwirkung beschränkt. Einerseits hat die Überwindung dieser Niederenergie-Grenze des Standardmodells direkte Auswirkungen auf zentrale Fragestellungen beispielsweise der Atom- und Teilchenphysik. Andererseits werden die Präzisionsmessungen zu einem Erkenntnisgewinn bezüglich der Struktur von Hadronen führen, zum Beispiel bezüglich der Frage, wie Quarks und Gluonen sich zu Hadronen verbinden.

Konkrete physikalische Ziele des Sonderforschungsbereichs 1044 sind unter anderem eine genauere Bestimmung des anomalen magnetischen Moments des Myons, der elektromagnetischen Feinstrukturkonstanten, eine Lösung des sogenannten Proton-Radius-Puzzles sowie eine Präzisionsmessung des elektroschwachen Weinbergwinkels. Zur Erfüllung dieser Ziele wird im SFB 1044 eine strategische Kooperation zwischen dem Mainzer Mikrotron MAMI und dem Beijing Spectrometer BES-III geschlossen. Dieser innovative Ansatz, Messungen der Elektronenstreuung (MAMI) sowie der Elektron-Positron-Physik (BES-III) zu kombinieren, wird maßgeblich dazu beitragen, die Niederenergie-Grenze des Standardmodells zu überwinden.

Das Mainzer Mikrotron MAMI an der Johannes Gutenberg-Universität Mainz ist ein Teilchenbeschleuniger für hochintensive Elektronenstrahlen, der seit 1990 in Betrieb ist. Mit dem Ausbau der vierten Stufe wurde im Jahre 2007 die Energie des Strahls auf 1,6 Gigaelektronenvolt (GeV) erhöht. Der Elektronenbeschleuniger dient Wissenschaftlern aus der ganzen Welt für Experimente in der Kern- und Teilchenphysik. Er zeichnet sich durch einen scharf definierten Strahl und hohe Genauigkeit aus. Das Gerät eignet sich daher sehr gut, um Präzisionsuntersuchungen zur Struktur der Materie im subatomaren Bereich durchzuführen. Die Arbeiten im Rahmen des neuen SFB 1044 sind in das Mainzer Exzellenzcluster „Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) integriert, das sich derzeit in der abschließenden Auswahlrunde der Bundesexzellenzinitiative bewirbt.

Petra Giegerich | idw
Weitere Informationen:
http://www.kph.uni-mainz.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
22.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics