Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Newton auf den Kopf gestellt

02.06.2017

In der Quantenwelt bewegen sich Objekte nicht immer so, wie wir es im Alltag gewohnt sind. Innsbrucker Experimentalphysiker um Hanns-Christoph Nägerl haben gemeinsam mit Theoretikern in München, Paris und Cambridge ein Quantenteilchen beobachtet, das sich in einer Oszillationsbewegung durch ein eindimensionales Gas bewegt. Sie berichten darüber in der Fachzeitschrift Science.

Ein vom Baum fallender Apfel soll Isaac Newton zu jener Theorie inspiriert haben, die die Bewegung eines Objekts beschreibt. Die Newtonschen Gesetze besagen, dass ein sich bewegendes Objekt sich gerade weiterbewegt bis eine äußere Kraft die Bahn verändert.


Physiker beobachteten die überraschende Oszillationsbewegung eines Quantenteilchens durch ein eindimensionales Gas.

Florian Meinert

Die Bedeutung dieser Bewegungsgesetze ist allgegenwärtig und reicht vom Fallschirmspringer im Schwerefeld der Erde über das Gefühl der Trägheit in einem beschleunigenden Flugzeug bis zu den Umlaufbahnen der Planeten um die Sonne.

In der Quantenwelt hingegen stößt dieses Alltagsverständnis von Bewegung an Grenzen und scheitert manchmal überhaupt. „Oder können Sie sich eine Glasmurmel vorstellen, die sich durch eine Flüssigkeit auf und ab bewegt anstatt einfach runter zu fallen“, fragt Hanns-Christoph Nägerl vom Institut für Experimentalphysik der Universität Innsbruck.

Sein Team hat gemeinsam mit Theoretikern in München, Paris und Cambridge ein Quantenteilchen entdeckt, das genau dieses Verhalten zeigt. Grundlage der überraschenden Beobachtung ist die sogenannte Quanteninterferenz, jene Gesetzmäßigkeit der Quantenmechanik, wonach Teilchen sich wie Wellen verhalten, die sich aufsummieren oder auslöschen können.

Nahe am absoluten Nullpunkt

Um das Teilchen oszillieren zu sehen, haben die Forscher ein Gas aus Cäsiumatomen fast bis auf den absoluten Nullpunkt gekühlt und in sehr dünne Röhrchen gesperrt, die mit Laserstrahlen erzeugt wurden. Durch einen speziellen Trick wurden die Atome dazu gebracht, stark miteinander zu wechselwirken. Unter diesen extremen Bedingungen bilden die Teilchen eine Art Quantenflüssigkeit, deren Bewegung nur entlang der Röhrchen möglich ist.

Die Physiker beschleunigten dann ein weiteres Atom in einem anderen Spinzustand durch das Gas. Dabei beobachteten sie, wie die Quantenwelle dieses Atoms von den anderen Atomen gestreut und wieder zurückreflektiert wurde. Dies erzeugte die verblüffende Oszillationsbewegung, die im Gegensatz zu dem steht, was eine Murmel macht, wenn sie ins Wasser fällt. Das Experiment zeigt, dass Newtons Gesetze in der Quantenwelt nicht uneingeschränkt gelten.

Kristallines Verhalten von Quantenflüssigkeiten

Die Tatsache, dass Quantenwellen in bestimmte Richtungen reflektiert werden können, ist nicht neu. So ist zum Beispiel bekannt, dass Elektronen im Kristallgitter eines Festkörpers reflektiert werden, was als Bragg-Streuung bezeichnet wird. Im Innsbrucker Experiment war allerdings kein Kristall vorhanden.

Es war vielmehr das atomare Gas selbst, das eine Art versteckte Ordnung darstellte, was Physiker als Korrelationen bezeichnen. Die nun in der Fachzeitschrift Science veröffentlichte Arbeit zeigt, wie diese Korrelationen in Verbindung mit der Wellen-Natur von Materie die Bewegung von Teilchen in der Quantenwelt bestimmen und zu neuen Phänomenen führen, die auf den ersten Blick unserer Intuition widersprechen.

Die Eigentümlichkeit der Quantenmechanik zu verstehen, kann auch für breitere Anwendungen interessant sein und zum Beispiel dabei helfen, grundlegende Mechanismen in elektronischen Bauteilen oder sogar Transportprozesse in komplexen biologischen Systemen besser zu verstehen.

Diese Forschungen wurden unter anderem vom österreichischen Wissenschaftsfonds FWF und dem europäischen Wissenschaftsrat ERC und dem TUM Institute for Advanced Study finanziell unterstützt.

Publikation: Bloch oscillations in the absence of a lattice. Florian Meinert, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler, Hanns-Christoph Nägerl. Science 2017. DOI: 10.1126/science.aah6616

Rückfragehinweis:
Hanns-Christoph Nägerl
Institut für Experimentalphysik
Universität Innsbruck
Tel: +43 512 507-52420
E-mail: christoph.naegerl@uibk.ac.at
Web: www.ultracold.at

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1126/science.aah6616 - Bloch oscillations in the absence of a lattice. Florian Meinert, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler, Hanns-Christoph Nägerl. Science 2017
http://www.ultracold.at/ - Arbeitsgruppe Ultrakalte Atome und Quantengase, Universität Innsbruck
http://www.uibk.ac.at/exphys/ - Institut für Experimentalphysik - Universität Innsbruck

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften