Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Newton auf den Kopf gestellt

02.06.2017

In der Quantenwelt bewegen sich Objekte nicht immer so, wie wir es im Alltag gewohnt sind. Innsbrucker Experimentalphysiker um Hanns-Christoph Nägerl haben gemeinsam mit Theoretikern in München, Paris und Cambridge ein Quantenteilchen beobachtet, das sich in einer Oszillationsbewegung durch ein eindimensionales Gas bewegt. Sie berichten darüber in der Fachzeitschrift Science.

Ein vom Baum fallender Apfel soll Isaac Newton zu jener Theorie inspiriert haben, die die Bewegung eines Objekts beschreibt. Die Newtonschen Gesetze besagen, dass ein sich bewegendes Objekt sich gerade weiterbewegt bis eine äußere Kraft die Bahn verändert.


Physiker beobachteten die überraschende Oszillationsbewegung eines Quantenteilchens durch ein eindimensionales Gas.

Florian Meinert

Die Bedeutung dieser Bewegungsgesetze ist allgegenwärtig und reicht vom Fallschirmspringer im Schwerefeld der Erde über das Gefühl der Trägheit in einem beschleunigenden Flugzeug bis zu den Umlaufbahnen der Planeten um die Sonne.

In der Quantenwelt hingegen stößt dieses Alltagsverständnis von Bewegung an Grenzen und scheitert manchmal überhaupt. „Oder können Sie sich eine Glasmurmel vorstellen, die sich durch eine Flüssigkeit auf und ab bewegt anstatt einfach runter zu fallen“, fragt Hanns-Christoph Nägerl vom Institut für Experimentalphysik der Universität Innsbruck.

Sein Team hat gemeinsam mit Theoretikern in München, Paris und Cambridge ein Quantenteilchen entdeckt, das genau dieses Verhalten zeigt. Grundlage der überraschenden Beobachtung ist die sogenannte Quanteninterferenz, jene Gesetzmäßigkeit der Quantenmechanik, wonach Teilchen sich wie Wellen verhalten, die sich aufsummieren oder auslöschen können.

Nahe am absoluten Nullpunkt

Um das Teilchen oszillieren zu sehen, haben die Forscher ein Gas aus Cäsiumatomen fast bis auf den absoluten Nullpunkt gekühlt und in sehr dünne Röhrchen gesperrt, die mit Laserstrahlen erzeugt wurden. Durch einen speziellen Trick wurden die Atome dazu gebracht, stark miteinander zu wechselwirken. Unter diesen extremen Bedingungen bilden die Teilchen eine Art Quantenflüssigkeit, deren Bewegung nur entlang der Röhrchen möglich ist.

Die Physiker beschleunigten dann ein weiteres Atom in einem anderen Spinzustand durch das Gas. Dabei beobachteten sie, wie die Quantenwelle dieses Atoms von den anderen Atomen gestreut und wieder zurückreflektiert wurde. Dies erzeugte die verblüffende Oszillationsbewegung, die im Gegensatz zu dem steht, was eine Murmel macht, wenn sie ins Wasser fällt. Das Experiment zeigt, dass Newtons Gesetze in der Quantenwelt nicht uneingeschränkt gelten.

Kristallines Verhalten von Quantenflüssigkeiten

Die Tatsache, dass Quantenwellen in bestimmte Richtungen reflektiert werden können, ist nicht neu. So ist zum Beispiel bekannt, dass Elektronen im Kristallgitter eines Festkörpers reflektiert werden, was als Bragg-Streuung bezeichnet wird. Im Innsbrucker Experiment war allerdings kein Kristall vorhanden.

Es war vielmehr das atomare Gas selbst, das eine Art versteckte Ordnung darstellte, was Physiker als Korrelationen bezeichnen. Die nun in der Fachzeitschrift Science veröffentlichte Arbeit zeigt, wie diese Korrelationen in Verbindung mit der Wellen-Natur von Materie die Bewegung von Teilchen in der Quantenwelt bestimmen und zu neuen Phänomenen führen, die auf den ersten Blick unserer Intuition widersprechen.

Die Eigentümlichkeit der Quantenmechanik zu verstehen, kann auch für breitere Anwendungen interessant sein und zum Beispiel dabei helfen, grundlegende Mechanismen in elektronischen Bauteilen oder sogar Transportprozesse in komplexen biologischen Systemen besser zu verstehen.

Diese Forschungen wurden unter anderem vom österreichischen Wissenschaftsfonds FWF und dem europäischen Wissenschaftsrat ERC und dem TUM Institute for Advanced Study finanziell unterstützt.

Publikation: Bloch oscillations in the absence of a lattice. Florian Meinert, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler, Hanns-Christoph Nägerl. Science 2017. DOI: 10.1126/science.aah6616

Rückfragehinweis:
Hanns-Christoph Nägerl
Institut für Experimentalphysik
Universität Innsbruck
Tel: +43 512 507-52420
E-mail: christoph.naegerl@uibk.ac.at
Web: www.ultracold.at

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1126/science.aah6616 - Bloch oscillations in the absence of a lattice. Florian Meinert, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler, Hanns-Christoph Nägerl. Science 2017
http://www.ultracold.at/ - Arbeitsgruppe Ultrakalte Atome und Quantengase, Universität Innsbruck
http://www.uibk.ac.at/exphys/ - Institut für Experimentalphysik - Universität Innsbruck

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungsnachrichten

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungsnachrichten

CES Innovation Award für kombinierte Blick- und Spracheingabe im Auto

23.01.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics