Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronensterne in der Rechnerwolke

30.08.2013
Einstein@Home findet in Archivdaten 24 bisher unbekannte Pulsare

Die geballte Rechenkraft von 200 000 Privatrechnern hilft Astronomen bei der Inventur der Milchstraße. Das Projekt Einstein@Home verbindet die Computer von Freiwilligen aus aller Welt zu einem globalen Supercomputer.


Nach unbekannten Neutronensternen durchsucht das Projekt Einstein@Home, in dem unzählige Privatrechner zu einem Supercomputer vernetzt werden, die Daten von Radioteleskopen. Diese künstlerische Darstellung zeigt einen Neutronenstern, das ihn umgebende starke Magnetfeld (blau) und den schmalen Strahl an Radiowellen (magenta) über seinen magnetischen Polen. Wenn der Strahl des sich drehenden Sterns über die Erde streicht, lässt sich der Neutronenstern als Pulsar entdecken.

© NASA

Mit der Hilfe der Rechnerwolke durchsuchte ein internationales Team um Forscher der Max-Planck-Institute für Gravitationsphysik und für Radioastronomie Archivdaten des Parkes-Radioteleskops in Australien. Dabei entdeckte das weltumspannende Rechnernetzwerk mit neuartigen Analysemethoden 24 Pulsare – außergewöhnliche Sternreste mit extremen physikalischen Eigenschaften. Sie können als Prüfstand für Einsteins Relativitätstheorie dienen und unser Bild von der Gesamtpopulation dieser Himmelskörper vervollständigen.

„Unsere Suche war nur dank der großen Rechenkraft möglich, die uns die Einstein@Home-Freiwilligen zur Verfügung gestellt haben“, sagt Benjamin Knispel, wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) in Hannover und Erstautor der Veröffentlichung, die jetzt in der Fachzeitschrift The Astrophysical Journal erschienen ist. „Durch die Beteiligung der Öffentlichkeit haben wir in der Milchstraße 24 neue Pulsare entdeckt, die zuvor übersehen wurden, einige davon besonders interessante Exemplare.“

Aufwendige Suche nach kosmischen Leuchttürmen

Pulsare sind die Überreste von Explosionen massereicher Sterne. Die stark magnetisierten und extrem dichten Neutronensterne rotieren schnell um die eigene Achse und strahlen entlang der Magnetfeldachse kegelförmig Radiowellen ab – ähnlich dem Scheinwerfer eines Leuchtturms. Trifft dieser Radiowellenkegel die Erde, lässt sich der Pulsar beobachten.

Um die schwachen Signale neuer Pulsare aufzuspüren, sind große Radioteleskope notwendig. Knispel und seine Kollegen durchsuchten Daten der Parkes Multi-beam Pulsar Survey, die in den Jahren 1997 bis 2001 mit der 64-Meter-Antenne des Parkes-Observatoriums im Südosten Australiens aufgenommen und bereits mehrfach mit zunehmender Empfindlichkeit durchsucht wurden. „Die Suche nach neuen Radiopulsaren ist sehr rechenaufwendig. Um die a priori unbekannten Eigenschaften wie die Entfernung und die Periode der Eigendrehung genau zu bestimmen, müssen wir große Parameterbereiche sehr fein durchsuchen“, so Knispel.

Pulsarsuche mit Bürgerbeteiligung

Bei Einstein@Home „spenden“ jede Woche im Durchschnitt rund 50 000 Freiwillige aus aller Welt brachliegende Rechenkraft auf ihren insgesamt rund 200 000 Computern. Zusammen bringen sie es so auf eine Rechenkraft von rund 860 TeraFlop pro Sekunde und würden Einstein@Home einen Platz unter den schnellsten Rechnern der Welt sichern. Für die Suche in den Parkes-Daten brauchten die vernetzten Rechner so nur acht Monate, während ein einzelner CPU-Kern dafür 17 000 Jahre gebraucht hätte.

Entscheidend für die Entdeckung der zwei Dutzend Pulsare war aber nicht nur die enorme Rechenleistung von Einstein@Home, sondern auch die Entwicklung neuer Methoden, um die Ergebnisse nachzubereiten. In den Messdaten finden sich häufig menschengemachte Störsignale, die Pulsaren ähneln. Mit ihren neuen Verfahren gelang es den Astronomen, auch in Anwesenheit der Störsignale Pulsare zu entdecken, die zuvor verdeckt worden wären.

Ungewöhnliche Exemplare im Zoo der Pulsare

Die Astronomen nutzten die Radioteleskope bei Parkes, am Jodrell-Bank-Observatorium und bei Effelsberg zu Folgebeobachtungen, um ihre Entdeckungen genauer zu charakterisieren. „Es gibt verschiedene Arten von Pulsaren, ganz ähnlich den verschiedenen Tierarten in einem Zoo. Einige sind häufiger anzutreffen als andere, von denen manchmal nur eine Handvoll bekannt ist“, erklärt Ralph Eatough, wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Radioastronomie in Bonn und Zweitautor der Veröffentlichung.

Für die Astronomen besonders interessant sind Pulsare in Doppelsternsystemen. Denn sie ermöglichen Einblicke in ihre Entstehungsgeschichte oder können als Prüfstände für Einsteins Relativitätstheorie dienen. Doch sie aufzuspüren ist noch schwieriger als die Suche nach einzelnen Pulsaren, die wegen der unbekannten Eigenschaften der Himmelskörper schon aufwendig genug ist. Denn ein Pulsar in einem Doppelsternsystem hinterlässt in den Daten komplexere Spuren, sodass der Rechenaufwand wächst und die Kapazitäten der Computercluster an den beiden beteiligten Max-Planck-Instituten übersteigt.

Unter den 24 nun mit Einstein@Home entdeckten Pulsaren befinden sich sechs dieser ungewöhnlichen Exemplare, die in Doppelsternsystemen einen gemeinsamen Massenschwerpunkt mit ihrem Partner umkreisen. Diese Objekte entstehen häufig nur unter besonderen astrophysikalischen Umständen, die die Forscher so genauer rekonstruieren können. Einer der entdeckten Pulsare hat eine ungewöhnlich lange Umlaufperiode von rund 940 Tagen – die viertlängste aller bekannten Systeme. Er könnte sich in Zukunft als Prüfstand für Einsteins Allgemeine Relativitätstheorie erweisen.

Andere der nun entdeckten Pulsare scheinen ihre Radioemission für einige Minuten oder Stunden abzuschalten. „Dieses Phänomen wurde bereits zuvor beobachtet, es ist jedoch noch nicht vollständig verstanden. Weitere Untersuchungen können unser Verständnis der Vorgänge im Magnetfeld der Pulsare verbessern, die zur Entstehung der Radiostrahlung führen“, so Eatough.

Neben diesen besonderen Objekten ist für Astronomen auch die Entdeckung der „normalen“ Pulsare wichtig. Die Parkes Multi-beam Pulsar Survey wird häufig als Referenz für Computersimulationen der gesamten Pulsar-Population unserer Galaxie genutzt. Erst wenn alle in den Beobachtungsdaten verborgenen Pulsare entdeckt wurden, lassen sich präzise Schlüsse auf die Gesamtheit der Pulsare in unserer Milchstraße ziehen.

Ein Rechenmodell für die Zukunft

„Unsere Entdeckungen beweisen, dass verteilte Rechenprojekte wie Einstein@Home eine sehr wichtige Rolle in der modernen datenbasierten Astronomie spielen“, sagt Bruce Allen, Direktor von Einstein@Home und Direktor am Albert-Einstein-Institut. „Wir erwarten, dass verteiltes Rechnen für die astronomische Datenanalyse zukünftig noch wichtiger werden wird. Bei Einstein@Home sind wir außerdem bestens auf die zunehmende Mobilität der Rechenkraft vorbereitet“, so Allen. Denn seit kurzem können Freiwillige nicht nur die Rechenkraft auf ihren Computern zur Verfügung stellen, sondern auch mit ihren Android-Smartphones und -Tablets bei der Suche nach unbekannten Radiopulsaren helfen.

„In einem der nächsten Projekte möchten wir die Rechenkraft von Einstein@Home nutzen, um neu gewonnene Daten unseres hochempfindlichen Radioteleskops bei Effelsberg nach Pulsaren in extrem engen Doppelsternsystemen zu durchsuchen“, sagt Michael Kramer, Direktor am Max-Planck-Institut für Radioastronomie. Solche Systeme ermöglichen Tests der allgemeinen Relativitätstheorie, weil sich deren Effekte bei zwei sehr schweren Objekten, die in dichtem Abstand umeinander kreisen, besonders deutlich zeigen. Michael Kramer ist auf die Suche schon gespannt: „Wer weiß, welche Überraschungen dabei auf uns warten.“

Hintergrundinformationen zu Einstein@Home

Das Projekt für verteiltes Rechnen verbindet PC-Nutzer aus der ganzen Welt, die freiwillig brachliegende Rechenzeit ihrer Heim- und Bürocomputer zur Verfügung stellen. Mit mehr als 340 000 Teilnehmern ist es eines der größten Projekte dieser Art. Wissenschaftlicher Träger sind das Center for Gravitation and Cosmology an der University of Wisconsin–Milwaukee und das Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut, Hannover) mit finanzieller Unterstützung der National Science Foundation und der Max-Planck-Gesellschaft.

Seit 2005 durchsucht Einstein@Home Daten der Gravitationswellendetektoren innerhalb der LIGO-Virgo-Science Collaboration (LVC) nach Gravitationswellen von unbekannten, schnell rotierenden Neutronensternen.

Ab März 2009 widmete sich Einstein@Home auch der Suche nach Signalen von Radiopulsaren in Beobachtungen des Arecibo Observatoriums in Puerto Rico und des Parkes-Observatorium in Australien. Seit der ersten Entdeckung eines Radio-Pulsars im August 2010 mit Einstein@Home hat das weltweite Computernetzwerk insgesamt fast 50 Radiopulsare aus den Daten gefischt.

Neu hinzugekommen ist im August 2011 ein Projekt zur Suche nach Gammapulsaren in den Daten des Fermi-Satelliten, das unter anderem nach dem ersten Millisekundenpulsar sucht, der sich nur im Gammabereich zeigt.

Ansprechpartner
Dr. Benjamin Knispel
Pressekontakt
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-19104
E-Mail: benjamin.knispel@­aei.mpg.de
Dr. Norbert Junkes
Pressebeauftragter
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-399
Fax: +49 2257 301-105
E-Mail: njunkes@­mpifr-bonn.mpg.de
Originalpublikation
Benjamin Knispel et al.
Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey
Astrophysical Journal, 20. August 2013

Dr. Benjamin Knispel | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7511771/einstein_home_pulsar_radioteleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie