Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronenstern tanzt mit Partner perfekt im Kreis

08.04.2011
Das Paar entpuppt sich als Testkandidat für die Allgemeine Relativitätstheorie

Neutronensterne sind Exoten. Sie bestehen aus Materie, die viel dichter gepackt ist als gewöhnlich und rotieren mit hohem Tempo um die eigene Achse. Dabei senden sie Strahlung aus und werden häufig als Pulsare im Radiowellenbereich sichtbar.


Tanz um den gemeinsamen Schwerpunkt: Diese Simulation zeigt die Umlaufbahnen des Pulsars J1952+2630 und seines Begleiters, vermutlich ein Weißer Zwerg. Die Orbits sind nahezu kreisförmig, die scheinbare Elliptizität entsteht durch den Blickwinkel. Die Masse des Weißen Zwergs in einem derartigen Doppelsternsystem ist mit 95 Prozent der Masse unserer Sonne außergewöhnlich hoch. © AEI

Forscher des Max-Planck-Instituts für Gravitationsphysik in Hannover haben im Rahmen der internationalen PALFA-Kollaboration und dank engagierter Teilnehmer am Projekt Einstein@Home nun einen Pulsar entdeckt, der gemeinsam mit einem Weißen Zwerg – einer ausgebrannten Sonne – einen perfekten Kreistanz aufführt. Anhand des sogenannten Shapiro-Effekts wollen die Forscher das Paar wiegen.

Um knifflige Fragestellungen der Allgemeinen Relativitätstheorie zu beantworten, bleibt den Wissenschaftlern meist nur der Blick tief ins All. Und selbst dort sind die geeigneten astrophysikalischen Objekte aus dem Datenwust oft nur mit großer Mühe herauszufiltern. Deshalb lassen sich die Wissenschaftler bei der zeitaufwendigen Datenanalyse von Freiwilligen helfen, die für Projekte wie Einstein@Home ungenutzte Rechenleistung ihrer Heim- oder Bürocomputer zur Verfügung stellen.

Mit dieser Unterstützung fand die Arbeitsgruppe von Bruce Allen, Direktor am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut / AEI) in Hannover, gemeinsam mit Kollegen der PALFA-Kollaboration den Radiopulsar J1952+2630. Die Forscher wurden in den Daten des Arecibo-Teleskops fündig. „Ich bin sehr begeistert, dass das Einstein@Home-Team einen weiteren exotischen Radiopulsar aufgespürt hat. Diese erstaunlichen Objekte sind wirklich extrem, auf ein Drittel ihrer Größe zusammengedrückt, würden sie zu einem Schwarzen Loch kollabieren“, sagt Allen. „Ein großes Dankeschön geht an die Tausenden Freiwilligen, ohne die wir die Entdeckung nicht gemacht hätten.“

J1952+2630 blitzt alle 20,7 Millisekunden einmal auf und befindet sich in einer Entfernung von rund 31000 Lichtjahren von der Erde. Aus der Modulation der Radiopulse schlossen die Astronomen, dass der Pulsar einen Partnerstern mit einer Mindestmasse von 95 Prozent der Sonnemasse besitzt. Der Tanz beider Himmelskörper einmal um den gemeinsamen Schwerpunkt dauert 9,4 Stunden und ist nahezu perfekt kreisförmig.

Aus dieser Bahnform ziehen die Astrophysiker wichtige Schlüsse über Natur und Entwicklungsgeschichte des Begleiters, den sie gar nicht direkt sehen können: Er ist wahrscheinlich ein (verhältnismäßig schwerer) Weißer Zwerg – ein ausgedienter Stern, der einmal ein recht gewöhnliches Dasein geführt hat, so wie unsere Sonne auch. Am Ende seines Lebens blähte er sich zu einem Roten Riesen auf und stieß die äußere Materieschicht ab. Einen Teil dieser Materie saugte dann der Neutronenstern auf.

Die beiden Sterne tauschten auch (Bahn-)Drehimpuls aus, wobei sich ihre Umlaufbahnen in einen perfekten Kreis verwandelte. Hätte der Begleitstern früher deutlich mehr Masse als die Sonne besessen, dann hätte er sich am Ende seines Lebens bei einer Supernova-Explosion ebenfalls in einen Neutronenstern verwandelt. Und durch den dabei entstehenden Impuls wäre er asymmetrisch in eine elliptische Bahn gekickt worden.

Die Kombination aus einem Neutronenstern und einem recht massereichen Weißen Zwerg bei kreisrunder Umlaufbahn ist selten; gewöhnlich haben Weiße Zwerge bei solchen Bahnorbits lediglich 0,1 bis 0,3 Sonnenmassen. Und gerade einmal ein halbes Dutzend der rund hundert bekannten Zweifachsternsysteme mit Pulsar weisen diese Eigenschaften auf. Bisher kennen die Astronomen 1900 Pulsare, Einzelgänger eingeschlossen.

„Dank der relativ hohen Masse des Begleiters eignet sich dieses Doppelsternsystem vermutlich zum Testen eines allgemeinrelativistischen Phänomens, nämlich dem der Laufzeitverzögerung von Licht“, sagt Bruce Allens Doktorand Benjamin Knispel. „Damit könnten wir auch die Massen der beiden Komponenten exakt bestimmen.“

Dieser auch als Shapiro-Verzögerung bezeichnete Effekt entsteht, wenn sichtbares Licht oder Radiowellen auf dem Weg durchs All ein Gravitationsfeld, etwa das eines Sterns, passiert. Das Schwerefeld lenkt die Strahlen von der geraden Bahn ab. Für diesen Umweg braucht das Licht aber etwas mehr Zeit. Während sich nun ein Weißer Zwerg in die Sichtlinie zwischen Pulsar und Erde schiebt, müssen die regelmäßig vom Neutronenstern ausgesandten Radiopulse eine immer weitere Strecke zurücklegen.

Auf diese Weise treffen die Pulse nacheinander in jeweils größerem zeitlichem Abstand beim Beobachter ein. „Um dies zu messen, müssen wir möglichst von der Seite auf das System blicken, also auf die Kante der Bahnebene, sodass der Radiopuls des Neutronensterns bei bestimmten räumlichen Konstellationen das Schwerefeld des Weißen Zwergs auf dem Weg zu uns durchläuft“, sagt Knispel. Mit dieser Methode ließen sich die beiden Sterne wiegen. Hierzu plant Benjamin Knispel schon zusammen mit seinen Kollegen die nächsten Beobachtungen.

Weitere Informationen:

Das Pulsar ALFA (PALFA)-Konsortium wurde im Jahr 2003 gegründet mit dem Ziel, eine großangelegte Pulsardurchmusterung mit dem Arecibo-Teleskop durchzuführen. Ihm gehören Astronomen von 20 Universitäten, Instituten und Observatorien weltweit an.

Einstein@Home ist mit mehr als 290.000 Teilnehmern eines der weltweit größten Projekte für verteiltes Rechnen. Es wurde 2005 ins Leben gerufen und sucht seitdem in den Daten der Detektoren der internationalen LIGO / Virgo / GEO-Kollaboration nach Gravitationswellen. Seit 2009 werden 35 Prozent der verfügbaren Rechenleistung verwendet, um die PALFA-Kollaboration bei ihrer Arbeit zu unterstützen.

Die beiden Amateurwissenschaftler, deren Computer das höchste Signal der Datenanalyse fand, sind Vitaly V. Shiryaev (Moskau, Russland) und Stacey Eastham (Darwen, Großbritannien). Sie werden in der Danksagung der Veröffentlichung namentlich genannt.

Ansprechpartner
Prof. Bruce Allen
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-17145
E-Mail: Bruce.allen@aei.mpg.de
Dr. Felicitas Mokler
Public Relations
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-17098
E-Mail: felicitas.mokler@aei.mpg.de
Originalveröffentlichung
B. Knispel, P. Lazarus, B. Allen, D. Anderson, C. Aulbert, N. D. R. Bhat, O. Bock, et al.
Arecibo PALFA Survey and Einstein@Home: Binary Pulsar Discovery by Volunteer Computing

Astrophysical Journal Letters 732/1 L1

Dr. Felicitas Mokler | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/1256515/Pulsar_Weisser_Zwerg

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE