Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronenstern tanzt mit Partner perfekt im Kreis

08.04.2011
Das Paar entpuppt sich als Testkandidat für die Allgemeine Relativitätstheorie

Neutronensterne sind Exoten. Sie bestehen aus Materie, die viel dichter gepackt ist als gewöhnlich und rotieren mit hohem Tempo um die eigene Achse. Dabei senden sie Strahlung aus und werden häufig als Pulsare im Radiowellenbereich sichtbar.


Tanz um den gemeinsamen Schwerpunkt: Diese Simulation zeigt die Umlaufbahnen des Pulsars J1952+2630 und seines Begleiters, vermutlich ein Weißer Zwerg. Die Orbits sind nahezu kreisförmig, die scheinbare Elliptizität entsteht durch den Blickwinkel. Die Masse des Weißen Zwergs in einem derartigen Doppelsternsystem ist mit 95 Prozent der Masse unserer Sonne außergewöhnlich hoch. © AEI

Forscher des Max-Planck-Instituts für Gravitationsphysik in Hannover haben im Rahmen der internationalen PALFA-Kollaboration und dank engagierter Teilnehmer am Projekt Einstein@Home nun einen Pulsar entdeckt, der gemeinsam mit einem Weißen Zwerg – einer ausgebrannten Sonne – einen perfekten Kreistanz aufführt. Anhand des sogenannten Shapiro-Effekts wollen die Forscher das Paar wiegen.

Um knifflige Fragestellungen der Allgemeinen Relativitätstheorie zu beantworten, bleibt den Wissenschaftlern meist nur der Blick tief ins All. Und selbst dort sind die geeigneten astrophysikalischen Objekte aus dem Datenwust oft nur mit großer Mühe herauszufiltern. Deshalb lassen sich die Wissenschaftler bei der zeitaufwendigen Datenanalyse von Freiwilligen helfen, die für Projekte wie Einstein@Home ungenutzte Rechenleistung ihrer Heim- oder Bürocomputer zur Verfügung stellen.

Mit dieser Unterstützung fand die Arbeitsgruppe von Bruce Allen, Direktor am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut / AEI) in Hannover, gemeinsam mit Kollegen der PALFA-Kollaboration den Radiopulsar J1952+2630. Die Forscher wurden in den Daten des Arecibo-Teleskops fündig. „Ich bin sehr begeistert, dass das Einstein@Home-Team einen weiteren exotischen Radiopulsar aufgespürt hat. Diese erstaunlichen Objekte sind wirklich extrem, auf ein Drittel ihrer Größe zusammengedrückt, würden sie zu einem Schwarzen Loch kollabieren“, sagt Allen. „Ein großes Dankeschön geht an die Tausenden Freiwilligen, ohne die wir die Entdeckung nicht gemacht hätten.“

J1952+2630 blitzt alle 20,7 Millisekunden einmal auf und befindet sich in einer Entfernung von rund 31000 Lichtjahren von der Erde. Aus der Modulation der Radiopulse schlossen die Astronomen, dass der Pulsar einen Partnerstern mit einer Mindestmasse von 95 Prozent der Sonnemasse besitzt. Der Tanz beider Himmelskörper einmal um den gemeinsamen Schwerpunkt dauert 9,4 Stunden und ist nahezu perfekt kreisförmig.

Aus dieser Bahnform ziehen die Astrophysiker wichtige Schlüsse über Natur und Entwicklungsgeschichte des Begleiters, den sie gar nicht direkt sehen können: Er ist wahrscheinlich ein (verhältnismäßig schwerer) Weißer Zwerg – ein ausgedienter Stern, der einmal ein recht gewöhnliches Dasein geführt hat, so wie unsere Sonne auch. Am Ende seines Lebens blähte er sich zu einem Roten Riesen auf und stieß die äußere Materieschicht ab. Einen Teil dieser Materie saugte dann der Neutronenstern auf.

Die beiden Sterne tauschten auch (Bahn-)Drehimpuls aus, wobei sich ihre Umlaufbahnen in einen perfekten Kreis verwandelte. Hätte der Begleitstern früher deutlich mehr Masse als die Sonne besessen, dann hätte er sich am Ende seines Lebens bei einer Supernova-Explosion ebenfalls in einen Neutronenstern verwandelt. Und durch den dabei entstehenden Impuls wäre er asymmetrisch in eine elliptische Bahn gekickt worden.

Die Kombination aus einem Neutronenstern und einem recht massereichen Weißen Zwerg bei kreisrunder Umlaufbahn ist selten; gewöhnlich haben Weiße Zwerge bei solchen Bahnorbits lediglich 0,1 bis 0,3 Sonnenmassen. Und gerade einmal ein halbes Dutzend der rund hundert bekannten Zweifachsternsysteme mit Pulsar weisen diese Eigenschaften auf. Bisher kennen die Astronomen 1900 Pulsare, Einzelgänger eingeschlossen.

„Dank der relativ hohen Masse des Begleiters eignet sich dieses Doppelsternsystem vermutlich zum Testen eines allgemeinrelativistischen Phänomens, nämlich dem der Laufzeitverzögerung von Licht“, sagt Bruce Allens Doktorand Benjamin Knispel. „Damit könnten wir auch die Massen der beiden Komponenten exakt bestimmen.“

Dieser auch als Shapiro-Verzögerung bezeichnete Effekt entsteht, wenn sichtbares Licht oder Radiowellen auf dem Weg durchs All ein Gravitationsfeld, etwa das eines Sterns, passiert. Das Schwerefeld lenkt die Strahlen von der geraden Bahn ab. Für diesen Umweg braucht das Licht aber etwas mehr Zeit. Während sich nun ein Weißer Zwerg in die Sichtlinie zwischen Pulsar und Erde schiebt, müssen die regelmäßig vom Neutronenstern ausgesandten Radiopulse eine immer weitere Strecke zurücklegen.

Auf diese Weise treffen die Pulse nacheinander in jeweils größerem zeitlichem Abstand beim Beobachter ein. „Um dies zu messen, müssen wir möglichst von der Seite auf das System blicken, also auf die Kante der Bahnebene, sodass der Radiopuls des Neutronensterns bei bestimmten räumlichen Konstellationen das Schwerefeld des Weißen Zwergs auf dem Weg zu uns durchläuft“, sagt Knispel. Mit dieser Methode ließen sich die beiden Sterne wiegen. Hierzu plant Benjamin Knispel schon zusammen mit seinen Kollegen die nächsten Beobachtungen.

Weitere Informationen:

Das Pulsar ALFA (PALFA)-Konsortium wurde im Jahr 2003 gegründet mit dem Ziel, eine großangelegte Pulsardurchmusterung mit dem Arecibo-Teleskop durchzuführen. Ihm gehören Astronomen von 20 Universitäten, Instituten und Observatorien weltweit an.

Einstein@Home ist mit mehr als 290.000 Teilnehmern eines der weltweit größten Projekte für verteiltes Rechnen. Es wurde 2005 ins Leben gerufen und sucht seitdem in den Daten der Detektoren der internationalen LIGO / Virgo / GEO-Kollaboration nach Gravitationswellen. Seit 2009 werden 35 Prozent der verfügbaren Rechenleistung verwendet, um die PALFA-Kollaboration bei ihrer Arbeit zu unterstützen.

Die beiden Amateurwissenschaftler, deren Computer das höchste Signal der Datenanalyse fand, sind Vitaly V. Shiryaev (Moskau, Russland) und Stacey Eastham (Darwen, Großbritannien). Sie werden in der Danksagung der Veröffentlichung namentlich genannt.

Ansprechpartner
Prof. Bruce Allen
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-17145
E-Mail: Bruce.allen@aei.mpg.de
Dr. Felicitas Mokler
Public Relations
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-17098
E-Mail: felicitas.mokler@aei.mpg.de
Originalveröffentlichung
B. Knispel, P. Lazarus, B. Allen, D. Anderson, C. Aulbert, N. D. R. Bhat, O. Bock, et al.
Arecibo PALFA Survey and Einstein@Home: Binary Pulsar Discovery by Volunteer Computing

Astrophysical Journal Letters 732/1 L1

Dr. Felicitas Mokler | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/1256515/Pulsar_Weisser_Zwerg

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics