Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronen machen Proteinbewegungen sichtbar

29.09.2008
Jülicher Physiker entwickeln Methode zur Beobachtung von Proteinbewegung

Physiker des Forschungszentrums Jülich haben eine neue Methode entwickelt, die erstmals großräumige innere Bewegungen von Proteinen in Raum und Zeit bestimmen kann.

Anders als bekannte Methoden ermöglicht diese Methode die direkte Messung nicht nur der Geschwindigkeit von inneren Bewegungen, sondern auch der räumlichen Ausdehnung und der dabei auftretenden inneren Kräfte. Die Forschungsergebnisse sind in der aktuellen Ausgabe der renommierten Fachzeitschrift „Physical Review Letters“ nachzulesen (Vol.101, No.13).

Proteine sind die molekularen „Maschinen“ des Lebens. Als „Motoren“ des Stoffwechsels sind sie in jeder Zelle unseres Körpers unermüdlich aktiv, transportieren, synthetisieren, spalten und wandeln Stoffe um. Fehlfunktionen von Proteinen können schwerwiegende gesundheitliche Folgen haben. Das ist nur einer der Gründe dafür, dass die „Nanomaschinen“ im Zentrum des Interesses vieler Wissenschaftler stehen. Auch ihre Eignung als Biokatalysatoren für die Produktion von Rohstoffen, etwa für die Lebensmittelindustrie, macht sie für Industrie und Forschung interessant. Nachdem in den vergangenen Jahren die Zusammensetzung vieler Proteine, d.h. die Reihenfolge ihrer Aminosäurebausteine, aufgeklärt wurde, konzentrieren sich die Bemühungen vieler Forscher nunmehr darauf, ihre Funktionsweise genauer zu verstehen.

Die bloße Reihenfolge der Bausteine sagt nämlich wenig aus; die dreidimensionale Struktur ist viel mehr entscheidend. Und diese ist nicht etwa starr, sondern passt sich dynamisch den Erfordernissen an. So katalysieren viele Proteine Umwandlungsprozesse in charakteristisch geformte Taschen, in die nur bestimmte Stoffe wie ein Schlüssel ins Schloss passen. Manchmal sorgt erst die Bindung so genannter Cofaktoren dafür, dass sich die richtige Form ausbildet.

Das ist bisher vor allem durch Strukturuntersuchungen von kristallisierten Proteinen nachgewiesen worden. Solche Untersuchungen stellen gewissermaßen „Schnappschüsse“ dar. Direkt beobachteten Forscher innere Bewegungen, indem sie jeweils zwei Punkte eines Proteins mit molekularbiologischen Methoden fluoreszierend markierten. So lassen sich zwar Abstandsänderungen verfolgen, aber nur mit großem Aufwand dreidimensionale Aussagen erzielen. Mangels weiterer geeigneter experimenteller Methoden gründeten viele Erkenntnisse bisher auf Computersimulationen.

Physiker des Jülicher Instituts für Festkörperforschung und des Jülich Centre for Neutron Science haben nun erstmals die inneren Bewegungen eines Proteins in Raum und Zeit nachweisen können. Neutronenstreuung ermöglichte die Beobachtung in einer wässrigen Lösung, die den natürlichen Gegebenheiten in einer Zelle nahe kommt. Als Forschungsobjekt diente ein Protein namens Alkoholdehydrogenase, kurz ADH, das aus Bäckerhefe gewonnen wurde. Die ADH ist eines der Schlüsselenzyme bei der Produktion von Alkohol wie auch bei dessen Abbau; es kommt zum Beispiel auch in der menschlichen Leber vor.

„Bei der ADH konnten wir mit unserem Vorgehen erstmals das Ausmaß und die Schnelligkeit der räumlichen Bewegung ihrer großen Untereinheiten, genannt Domänen, nachweisen.“, freut sich Prof. Dieter Richter, Direktor des Bereichs Neutronenstreuung. Eine zeitliche Auflösung von 100 Nanosekunden ermöglicht einen Blick auf das Auf- und Zuklappen einer Spalte zwischen jeweils zwei Untereinheiten, in der der Cofaktor gebunden wird. „Sogar die dabei herrschenden Kräfte konnten wir bestimmen“, so der Physiker. „Damit steht erstmals eine Methode zur Verfügung, mit der direkt zeitaufgelöste dreidimensionale Bewegungen in Proteinen beobachtet werden können.“ Die Methode eignet sich für Proteine mit einem Gewicht von 40 000 bis 200 000 u (1u = 1,66 x 10-27 kg) oder ungefähr der 40 000 bis 200 000-fachen Masse eines Wasserstoffatoms.

Neutronen sind elektrisch neutrale Bausteine der Atomkerne, die in Forschungsreaktoren oder Spallationsquellen erzeugt und auf die zu untersuchenden Proben gelenkt werden. An den Atomen und Molekülen der Proben „prallen“ sie ab; dabei können sie ihre Richtung und Geschwindigkeit ändern. Die Art dieser Streuung gibt Auskunft über die Anordnung und Bewegung der Atome in der Probe – ohne diese dabei zu zerstören. Für ihre Untersuchungen kombinierten die Jülicher Forscher trickreich zwei bekannte Methoden: Mittels so genannter Kleinwinkelstreuung bestimmten sie die Struktur, mittels Neutronenspinechospektroskopie die Bewegung. Die Kombination und ergänzende Simulationen ermöglichten es, störende Faktoren herauszurechnen, so dass im Ergebnis die Bewegungen innerhalb eines Einzelproteins herauskamen.

Links :

Originalveröffentlichung:

Direct observation of correlated interdomain motion in alcohol dehydrogenase Ralf Biehl, Bern Hoffmann, Michael Monkenbusch, Peter Falus, Sylvain Prévost, Rudolf Merkel, Dieter Richter Physical Review Letters, Vol.101, No.13 DOI: 10.1103/PhysRevLett.101.138102 http://link.aps.org/abstract/PRL/v101/e138102

Institut für Festkörperforschung: http://www.fz-juelich.de/iff/index.php

Jülich Centre for Neutron Science: http://www.jcns.info/

Pressekontakt: Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich, Institut für Festkörperforschung 52425 Jülich, Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Das Forschungszentrum Jülich…

… betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie & Umwelt sowie Informationstechnologien. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jülich sowohl langfristige, grundlagenorientierte und fächerübergreifende Beiträge zu Naturwissenschaften und Technik erarbeitet als auch konkrete technologische Anwendungen. Mit rund 4 400 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den größten Forschungszentren Europas.

Anne Winkens | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie