Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neumann Exzellenz-Projekt: Wie die ersten Galaxien entstanden

24.08.2009
Wissenschaftler am Astrophysikalischen Institut Potsdam (AIP) simulieren die Entstehung der ersten Galaxien auf Supercomputern

Das John von Neumann Institut für Computing (NIC) hat ein Forschungsprojekt von Dr. Stefan Gottlöber vom Astrophysikalischen Institut Potsdam (AIP) als "John von Neumann Exzellenz-Projekt 2009" ausgezeichnet.

Das Projekt wurde aufgrund der ausgezeichneten Vorarbeiten, der hohen Bedeutung der zu erwartenden Erkenntnisse und der Qualität der eingesetzten Methoden als eins von zwei Projekten unter 130 Anträgen ausgewählt. Das zweite Projekt stammt von Prof. Zoltan Fodor von der Universität Wuppertal.

Den Forschern wurde überdurchschnittlich viel Rechenzeit an den Jülicher Supercomputern bewilligt. Als virtuelles Labor ermöglichen diese Supercomputer die Simulation verschiedenster komplexer Vorgänge im Bereich Teilchen- und Astrophysik, wie etwa der Wechselwirkung von Quarks oder der Entstehung von Galaxien.

Stefan Gottlöber interessiert die Frühzeit des Weltalls. Eine Milliarde Jahre nach dem Urknall sind im Universum bereits zahlreiche Vorläufer unserer Galaxien entstanden, manche davon fast so groß wie die Milchstraße. In dem Projekt wird die Entstehung dieser frühen Objekte in einem Würfel simuliert, der zu diesem Zeitpunkt etwa 40 Millionen Lichtjahre groß ist und in dem etwa 5000 dieser Objekte erwartet werden. Die Verteilung der Dunklen Materie und des Gases etwa 20 Millionen Jahre nach dem Urknall wird mit je einer Milliarde Teilchen dargestellt.

Mit Rechnungen auf dem neuen Supercomputer JUROPA will Gottlöber verfolgen, wie die im Urknall entstandenen kleinen Dichteschwankungen wachsen und schließlich jene Objekte entstehen, aus denen sich Milliarden Jahre später Galaxien wie unsere Milchstraße gebildet haben. Die Simulationen erlauben Rückschlüsse auf die Eigenschaften dieser Objekte, die heute nur mit den leistungsstärksten Teleskopen als schwache Lichtpunkte beobachtet werden können, sowie auf den Anteil der Dunklen Materie an der Gesamtdichte des Universums.

Wissenschaftlicher Kontakt am AIP:
Dr. Stefan Gottlöber, Tel. 0331 7499-516, E-Mail: sgottloeber@aip.de
Pressestelle des AIP:
Madleen Köppen, Tel. 0331 7499-469, E-Mail: presse@aip.de
Das AIP beschäftigt sich vorrangig mit kosmischen Magnetfeldern und extragalaktischer Astrophysik.

Daneben wirkt das Institut als Kompetenzzentrum bei der Entwicklung von Forschungstechnologie in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Das AIP ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Das AIP ist eine Stiftung privaten Rechts und ein Institut der Leibniz-Gemeinschaft. Zur Leibniz-Gemeinschaft gehören derzeit 86 Forschungsinstitute und Serviceeinrichtungen für die Forschung sowie drei assoziierte Mitglieder, die wissenschaftliche Fragestellungen von gesamtgesellschaftlicher Bedeutung bearbeiten.

Madleen Köppen | idw
Weitere Informationen:
http://www.aip.de
http://www.aip.de/pr/presse.html
http://www.fz-juelich.de/portal/kurznachrichten/#neumann

Weitere Berichte zu: AIP Astrophysik Galaxie Materie Milchstraße Simulation Supercomputer Teleskop Universum Urknall

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops