Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren zur Analyse von Galliumnitrid auf Nanometerskala für die industrielle Forschung

07.11.2014

Galliumnitrid gilt als schwer erzeug- und kontrollierbares Material. Es bildet das Herz der blauen Leuchtdioden, für deren Entwicklung der diesjährige Physik-Nobelpreis vergeben wurde.

Drei japanischen Wissenschaftlern gelang es erstmals, qualitativ hochwertige Schichten aus Galliumnitrid (GaN) zu erzeugen, die etwa 1993 in die Serienfertigung überführt wurden. Mit der Analyse und Verbesserung dieses Materials beschäftigen sich Wissenschaftler und Ingenieure weltweit.


Nahfeldmikroskop mit Bruchstück eines Galliumnitrid-Wafers.

Bildquelle: Fraunhofer ILT, Aachen.

Am Fraunhofer-Institut für Lasertechnik ILT wurde in enger Kooperation mit dem I. Physikalischen Institut (IA) der RWTH Aachen University nun eine Analysemethodik entwickelt, mit deren Hilfe sich die strukturellen und elektronischen Eigenschaften von GaN und GaN-Verbundstoffen erstmals optisch im Nanometerbereich untersuchen lassen.

Ob für Bildschirme von Smartphones, Computern und Fernsehern oder für die Beleuchtungsindustrie: Der Bedarf der Wirtschaft nach massentauglichen LEDs steigt stetig, nicht zuletzt deshalb, weil sie ein Vielfaches weniger an Energie benötigen als Glühlampen, Halogenleuchten und sogar Energiesparlampen.

Die Entwicklung der blauen Leuchtdiode bildet den letzten Baustein zu Erzeugung von warmweißem Licht auf LED-Basis. Erst dieses Licht wird als angenehm empfunden, wodurch die Akzeptanz der Technologie nicht zuletzt für Heimanwendungen deutlich zunimmt. Zur Entwicklung immer leistungsfähigerer Elemente ist dabei eine kostengünstige und schnelle Analysemethode unverzichtbar.

Optische Analysen im Nanometerbereich

Die Auflösung konventioneller optischer Mikroskope stößt bei Objekten im Nanometerbereich jedoch an ihre physikalischen Grenzen. Abhängig von der verwendeten Lichtquelle lassen sich kleine Strukturen im Nanometerbereich, wie sie unter anderem in modernen Halbleiterbauelementen vorliegen, nicht getrennt auflösen. Optische Analysen sind auf diesem Wege ausgeschlossen.

Die Methodik der Nahfeldmikroskopie umgeht diese grundlegende Beschränkung und dringt auf optischem Weg in den Nanometerbereich vor. Die Anforderungen an die verwendete Lichtquelle sind dabei extrem hoch.

Lasersystem aus Aachen für die Nahfeldmikroskopie von Galliumnitrid

Forscher des Fraunhofer ILT haben in Zusammenarbeit mit I. Physikalischen Institut (IA) der RWTH Aachen University dafür in den letzten Jahren ein neuartiges breitbandig durchstimmbares Lasersystem entwickelt, welches auf die speziellen Anforderungen von Halbleiteranalysen ausgerichtet ist. Die Wellenlänge lässt sich an das zu untersuchende Material anpassen, so dass eine Vielzahl an Materialien mit dem neuen System untersucht werden kann.

Im Vergleich zu den bislang kommerziell verfügbaren sowie den in Forschung und Entwicklung eingesetzten Systemen ermöglicht die Neuentwicklung aus Aachen deutlich schnellere spektroskopische Analysen. Zudem lassen sich nun auch weitere Materialsysteme erschließen, die mit den bisherigen Systemen noch nicht zugänglich waren. Dazu zählen unter anderen auch GaN und GaN-Verbundstoffe.

Mit dem neu entwickelten Analysesystem gelang es den Aachener Forschern vergangenes Jahr erstmals, Verspannungen in der Kristallstruktur von undotierten GaN-Wafern auf optischem Wege zweidimensional darzustellen. Mithilfe von Computersimulationen ließ sich zudem das Ausmaß der Verspannungen genau quantifizieren.

In jüngster Zeit wurde das Verfahren auch auf unterschiedlich dotierte GaN-Schichten in komplexen Strukturen übertragen. Damit steht erstmals ein optisches Verfahren zur Verfügung, mit dessen Hilfe sich sowohl die strukturellen als auch die elektronischen Eigenschaften von GaN und GaN-Verbundstoffen auf der Nanometerskala untersuchen lassen.

Kostengünstig, präzise und zerstörungsfrei

Die Nahfeldmikroskopie besitzt gegenüber den üblicherweise eingesetzten Analysemethoden wirtschaftliche und qualitative Vorteile. Beispielsweise werden strukturelle Eigenschaften dünner GaN-Schichten derzeit mithilfe der Transmission-Elektronen-Mikroskopie untersucht. Die Kosten hierfür sind allerdings unter anderem aufgrund der aufwändigen Probenpräparationen sehr hoch. Nahfeldanalysen lassen sich in der Regel ohne jegliche Vorbehandlung durchführen.

Bei der Untersuchung der elektronischen Eigenschaften kommt derzeit die Sekundärionen-Massenspektrometrie zum Einsatz. Axial lassen sich hiermit die elektronischen Eigenschaften im Nanometerbereich erfassen, lateral ist eine Bestimmung der Dotieratomkonzentration in vergleichbarer Auflösung derzeit jedoch nicht möglich. Zudem ist die Methode werkstoffzerstörend. Die Nahfeldmikroskopie bietet hingegen in allen Dimensionen eine Auflösung im Nanometerbereich. Sie arbeitet völlig zerstörungsfrei und kann unter normalen Umgebungsbedingungen eingesetzt werden.

Einsatzmöglichkeiten des Analysesystems

Die Nahfeldmikroskopie lässt sich in unterschiedlichen Bereichen einsetzen. Zum Beispiel kann die Methodik in enger Kooperation mit den Entwicklern neuer Halbleiterbauelemente dabei helfen, die Prozessparameter gezielt zu optimieren. In einem sehr frühen Entwicklungsstadium können die physikalischen Vorgänge, insbesondere an den Grenzflächen der einzelnen Schichten, durch die Analyse besser verstanden werden.

Diese Erkenntnisse können schließlich die nachfolgenden Entwicklungsschritte maßgeblich bestimmen. Auch im Bereich der Hochfrequenz- und Leistungselektronik findet das Bauelement GaN aufgrund seiner physikalischen Eigenschaften immer weiter Einzug. Nahfeldmikroskopische Analyseverfahren sind für die Untersuchung dieser Materialien prädestiniert.

Ansprechpartner

Dr. Fabian Gaußmann
Messtechnik
Telefon +49 241 8906-489
fabian.gaussmann@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT, Aachen

Prof. Thomas Taubner
I. Physikalisches Institut (IA)
Telefon +49 241 80 20260
taubner@physik.rwth-aachen.de
RWTH Aachen University


Weitere Informationen:

http://www.ilt.fraunhofer.de
http://www.rwth-aachen.de

Petra Nolis | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten