Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren: Physiker messen Reibung in einem Schmiermittel auf molekularer Ebene

17.07.2014

Reibung ist ein Phänomen, das im Alltag immer wieder auftritt. Um Energieverluste durch Reibungskräfte etwa beim Auto zu vermeiden, setzen Ingenieure auf Schmiermittel.

Saarbrücker Physiker um Judith Hoth und Professor Roland Bennewitz haben ein neues Verfahren entwickelt, um diese Kräfte in Schmierstoffen auf molekularer Ebene zu messen. Dabei konnten sie den schichtartigen molekularen Aufbau des eigentlich flüssigen Schmierstoffs deutlicher sehen als mit bislang gängigen Methoden. Zudem haben sie gezeigt, dass die Reibung umso größer ist, je näher die einzelne molekulare Schicht an der Oberfläche des Materials liegt. Die Industrie könnte dies nutzen, um Reibung gezielt zu steuern. 


Die Abbildung zeigt ein typisches Ergebnis einer Kraftmessung an der ionischen Flüssigkeit. Während sich die Messspitze der Oberfläche nähert (abnehmende Distanz), spürt sie einen Widerstand der zusammengedrängten Flüssigkeit (zunehmende Kraft). Dabei springt die Messspitze von einer molekularen Lage zur nächsten, immer deutlicher je näher sie der Oberfläche kommt. Abb.: Bennewitz/INM

 Reibung entsteht immer dort, wo zwei Gegenstände sich zueinander bewegen. Wenn ein Auto zum Beispiel auf der Straße beschleunigt, entsteht zwischen dem Autoreifen und der Straße Reibung. In vielen Fällen ist diese Kraft unerwünscht, etwa wenn sie als Luftwiderstand zum Energieverbrauch des Autos beiträgt.

Um die Reibung herabzusetzen, kommen daher bei vielen technischen Prozessen Schmierstoffe zum Einsatz, zum Beispiel in Form von Ölen oder Graphit. Eine relativ neue Form von Schmierstoffen stellen sogenannte ionische Flüssigkeiten dar, die derzeit aber noch wenig Verwendung finden. „Diese Flüssigkeiten sind eigentlich geschmolzene Salze“, sagt Judith Hoth.

Im Gegensatz zum Kochsalz liegt dieses Salz in flüssiger Form vor. Es hält hohen Druck und hohe Temperaturen aus und verdampft nicht im Vakuum. „Kommen ionische Flüssigkeiten mit einer elektrisch geladenen Oberfläche in Kontakt, bilden sie Schichten aus“, erklärt die Physikerin weiter. „Die Anzahl der Schichten hängt dabei davon ab, wie stark die Bindung zur Oberfläche ist.“

Wie Reibungskräfte auf diese Schichten wirken, haben Physiker der Universität des Saarlandes und des Leibniz-Instituts für Neue Materialien in einer Studie mit einem neuen Verfahren am Rasterkraftmikroskop untersucht. Bislang kam so ein Mikroskop zum Einsatz, um Reibung zum Beispiel zwischen zwei Oberflächen im Schmierstoff zu messen und nicht die Reibung im Schmiermittel selbst, wie es die Saarbrücker Physiker nun getan haben.

Hoth und ihre Kollegen haben bei ihrem Ansatz die Reibung zwischen der Messspitze des Mikroskops und einer Goldoberfläche gemessen, während sich die Spitze in einer ionischen Flüssigkeit der Oberfläche nähert. Um herauszufinden, welche Reibung dort entsteht, haben die Forscher für jede Schicht die Kräfte gemessen, die senkrecht und seitlich auf die Schicht einwirken (Vertikal- und Lateralkräfte).

„Mit unserer Methode haben wir die Schichtstruktur stärker gesehen, als dies bislang möglich war“, erklärt Hoth. So konnten die Forscher zum Beispiel zeigen, dass die ionische Flüssigkeit in ihrem Versuch zwölf Schichten gebildet hat – eine Anzahl, die bislang noch nicht beobachtet werden konnte. Das experimentelle Ergebnis konnte mittels einer Theorie des Saarbrücker Materialwissenschaftlers Martin Müser im Detail beschrieben werden.

Darüber hinaus haben die Physiker herausgefunden, dass die Reibungskraft in der Schicht, die am nächsten zur Goldoberfläche ist, mit Abstand am größten ist. Mehrere Schichten der ionischen Flüssigkeit entwickelten dagegen ihre volle Schmierwirkung.

Für die Industrie könnten die Ergebnisse der Studie von Bedeutung sein: „Man könnte die Reibungskräfte bei einem solchen Schmiermittel künftig gezielt steuern, indem man je nach Bedarf die Anzahl der Schichten ändert“, sagt Hoth.

Judith Hoth hat einen internationalen Physikstudiengang absolviert, der von der Saar-Uni gemeinsam mit den Hochschulen in Lothringen und Luxemburg angeboten wird. Die Untersuchungen hat sie im Rahmen ihrer Masterarbeit bei Professor Roland Bennewitz am INM Leibniz-Institut für Neue Materialien durchgeführt. Hoth promoviert mittlerweile in Twente in den Niederlanden. Hier erforscht sie das Fließverhalten von ionischen Flüssigkeiten.

Die Studie wurde im „Journal of Physics: Condensed Matter“ veröffentlicht:
Judith Hoth, Florian Hausen, Martin H. Müser, and Roland Bennewitz: Force microscopy of layering and friction in an ionic liquid. DOI:10.1088/0953-8984/26/28/284110

emeinsame Pressemeldung der Universität des Saarlandes und des Leibniz-Instituts für Neue Materialien

Fragen beantworten:
Judith Hoth
Universität Twente
Tel.: +31-(0)53-489 2642
E-Mail: j.l.hoth(at)utwente.nl

Prof. Dr. Roland Bennewitz
Programmbereichsleiter Nanotribologie
INM Leibniz-Institut für Neue Materialien
Tel.: 0681 9300-213
E-Mail: roland.bennewitz(at)inm-gmbh.de

Weitere Informationen:

http://iopscience.iop.org/0953-8984/26/28/284110

Melanie Löw | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik