Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues vom Spin-Hall-Effekt

17.05.2010
Für die Entwicklung einer neuartigen Elektronik ist der so genannte Spin-Hall-Effekt technologisch sehr wichtig. Physiker von der Uni Würzburg haben ihn jetzt erstmals mit rein elektrischen Messungen nachgewiesen.

Warum der Spin-Hall-Effekt so spannend ist? Weil er in Halbleiter-Bauelementen Magnetisierungen erzeugt, ohne dass hierfür der aufwändige Einsatz externer Magnetfelder oder magnetischer Materialien nötig ist.

Derartige Manipulationen sind eine Grundvoraussetzung für die so genannte Spin-basierte Elektronik. Von dieser bislang nicht realisierten Technologie erhoffen sich Wissenschaftler unter anderem deutlich leistungsstärkere Computer oder Fortschritte bei der Verschlüsselung von Daten.

Publikation in „Nature Physics“

Ihren aktuellen Forschungserfolg beschreiben die Würzburger Physiker in der Top-Zeitschrift „Nature Physics“. Beteiligt an der Publikation sind die Teams der Würzburger Physik-Professoren Hartmut Buhmann, Werner Hanke, Ewelina Hankiewicz und Laurens W. Molenkamp.

Was macht den Spin-Hall-Effekt aus? In einem halbleitenden Bauelement lassen sich die Ladungsträger mit unterschiedlicher Magnetisierung zu den gegenüberliegenden Rändern des Elements lenken, ohne dass hierfür ein äußeres Magnetfeld nötig ist. Die unterschiedliche Magnetisierung rührt hier von einer unterschiedlichen Spin-Ausrichtung elektrischer Ladungsträger her. Sie wird bewirkt von der so genannten Spin-Bahn-Kopplung. Sie ist darauf zurückzuführen, dass ein in einem elektrischen Feld bewegtes Teilchen (Ladungsträger) immer auch ein magnetisches Feld spürt. Als Folge davon baut sich ein magnetisches Feld auf.

Dieser Effekt konnte in Halbleitern bisher nur mit optischen Methoden nachgewiesen werden. Dem Würzburger Forschungsteam aus experimentell und theoretisch arbeitenden Physikern jedoch ist es nun erstmals gelungen, den Effekt mit rein elektrischen Messungen zu zeigen. Das ermöglicht eine Nutzung in integrierten elektronischen Bauelementen.

Umkehrung physikalischer Effekte

Beim Nachweis des Spin-Hall-Effektes machten die Forscher vom Prinzip der Umkehrung physikalischer Effekte Gebrauch: Fließt auf der linken Seite einer H-förmigen Halbleiterstruktur ein elektrischer Strom, dann werden die Ladungsträger mit unterschiedlicher Magnetisierung (Spin) voneinander getrennt und sammeln sich am linken bzw. am rechten Rand der Struktur.

Wegen des Ungleichgewichts in der Spin-Verteilung kommt es am Rand des Querbalkens der H-Struktur zu einem reinen Spin-Strom. Dieser erreicht den rechten Schenkel der H-Struktur und bewirkt nun – als Umkehrung des Spin-Hall-Effekts – eine Trennung der Ladungsträger: Die Elektronen werden in eine Richtung senkrecht zum Spin-Strom gelenkt und können in Form einer Spannung gemessen werden.

H-förmige Halbleiter verwendet

Zu dieser Erkenntnis kamen die Physiker mit H-Strukturen, die circa 200 Nanometer breit und nur wenige Mikrometer lang sind. Als Halbleitermaterial verwendeten sie eine Schichtung aus Quecksilber-Tellurid und Quecksilber-Cadmium-Tellurid. In diesem Materialsystem ist der Spin-Hall-Effekt besonders stark ausgeprägt.

Im gleichen Materialsystem haben die Würzburger Physiker im Jahr 2007 bereits den Quanten-Spin-Hall-Effekt nachgewiesen. Dieser tritt nur dann auf, wenn im Material keine freien Ladungsträger vorhanden sind. Der Spin-Hall-Effekt wird dagegen bei elektrisch leitendem Material sichtbar.

Nachweis des Quanten-Spin-Hall-Effektes (Pressemitteilung von 2007): http://www.uni-wuerzburg.de/sonstiges/meldungen/single/artikel/physiker-f/

„Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures”, C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova & L. W. Molenkamp, Nature Physics, online publiziert am 2. Mai 2010, doi: 10.1038/nphys1655

Kontakt

Physikalisches Institut der Universität Würzburg

Prof. Dr. Hartmut Buhmann, T (0931) 31-85778, hartmut.buhmann@physik.uni-wurzburg.de

Prof. Dr. Laurens W. Molenkamp, T (0931) 31-84925, laurens.molenkamp@physik.uni-wuerzburg.de

Institut für Theoretische Physik und Astrophysik der Universität Würzburg

Prof. Dr. Ewelina M. Hankiewicz, T (0931) 31-84998, hankiewicz@physik.uni-wuerzburg.de

Prof. Dr. Werner Hanke, T (0931) 31-85714, hanke@physik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie