Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neues Schema für photonische Quantencomputer

13.10.2011
Quantencomputer versprechen eine weitaus leistungsstärkere Informationsverarbeitung als bestmögliche klassische Computer.

Die tatsächliche Herstellung eines effizienten Quantencomputers ist nach wie vor eine große Herausforderung. Das nun entwickelte, neuartige Schema der "kohärenten Photonen-Konversion" könnte potenziell alle derzeit ungelösten Probleme eines optischen Quantencomputers überwinden. Das internationale Forschungsteam um Anton Zeilinger am Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien stellt dieses neue Schema in der aktuellen Ausgabe der Fachzeitschrift "Nature" vor.

Quantentechnologie basiert auf der Erschließung einzigartiger Quantenphänomene wie der Superposition und der Verschränkung. Einzelne Lichtteilchen, sogenannte Photonen, sind dabei hervorragende Quanteninformationsträger, da sie auf natürliche Art und Weise ideal von ihrer Umgebung isoliert sind. Die auf Photonen basierenden Quantencomputer versprechen darüber hinaus, außerordentlich schnell zu sein. Allerdings sind derzeitige Methoden zum Präparieren, zur Verarbeitung und zur Messung von Photonen nach wie vor ineffizient.

Ein neuartiger Weg für Photonen

"Das neue Schema ermöglicht die kohärente Konversion zwischen unterschiedlichen Photonen-Zuständen und basiert auf der Erhöhung der Nicht-Linearität eines Mediums durch ein starkes Laserfeld. Diese Methode ebnet den Weg zur Lösung der noch offenen Herausforderungen in der optischen Quanteninformations-Verarbeitung", erklärt Sven Ramelow, Co-Autor der aktuellen "Nature"-Publikation. Die deterministische Verdoppelung einzelner Photonen löst etwa das Problem des Präparierens und der Messung, und eine neuartige Form einer Photon-Photon-Wechselwirkung öffnet den Weg für effiziente Quanten-Gatter. Diese neuen Quantenoptik-Werkzeuge, die durch die "kohärente Photonen-Konversion" ermöglicht werden, versprechen, zu einem nicht-linearen optischen Quantencomputer zu führen.

Erste Experimente

In einer ersten Serie von Experimenten mit Photonen demonstrierte die Forschungsgruppe um Anton Zeilinger am Vienna Center for Quantum Science and Technology an der Universität Wien den zentralen, dem Schema zugrunde liegenden Prozess mithilfe von hoch nichtlinearen Glasfasern. Während eine deterministische Umsetzung des Prozesses noch aussteht, legen die Ergebnisse der Autoren nahe, dass dies mit ausgeklügelten optischen Technologien wie hoch nicht-linearen Gläsern und stärkeren Lasern umgesetzt werden kann. Die allgemeine Idee der "kohärenten Photonen-Konversion" lässt sich auch bei verschiedensten anderen physikalischen Systemen wie Atomen oder nano-mechanischen Elementen anwenden.

Internationale Kooperation und Förderung

Diese Arbeit wurde ausgeführt als Kooperation von Wissenschaftern des Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien, des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften, des National Institute of Informatics und der NTT Basic Research Laboratories (NTT Corporation) in Japan und des Centre for Engineered Quantum Systems an der University of Queensland in Australien. Fördergeber waren Europäischer Forschungsrat (Advanced Grant QIT4QAD), FWF (F4007, Erwin Schrödinger Fellowship, Doktoratskolleg CoQuS W121), Europäische Kommission (QU-ESSENCE und QAP), John Templeton Foundation und teilweise das japanische Programm FIRST sowie das Ontario Ministry of Research and Innovation.

Publikation
Efficient quantum computing using coherent photon conversion
N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn & A. Zeilinger

DOI:10.1038/nature10463

Wissenschaftlicher Kontakt
Dipl.-Phys. Sven Ramelow
Institut für Quantenoptik und Quanteninformation (IQOQI)
Österreichische Akademie der Wissenschaften
Vienna Center for Quantum Science and Technology (VCQ)
Universität Wien
1090 Wien, Boltzmanngasse 3
T +43-1-4277-295 56
sven.ramelow@univie.ac.at
Rückfragehinweis
Daniela Charlesworth
Institut für Quantenoptik und Quanteninformation (IQOQI)
Österreichische Akademie der Wissenschaften
1090 Wien, Boltzmanngasse 3
T +43-1-4277-512 01
zeilinger-office@univie.ac.at

Alexander Dworzak | Universität Wien
Weitere Informationen:
http://www.vcq.quantum.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie