Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Röntgenmikroskop ermöglicht den zerstörungsfreien Blick ins Innere von Mikrochips

29.09.2010
Verschiedenste Anwendungen von Röntgenstrahlung sind aus dem alltäglichen Leben bekannt. So gewähren zum Beispiel Röntgenuntersuchungen in der Medizin oder die Gepäckkontrolle am Flughafen einen - zum Glück - zerstörungsfreien Blick ins Innere von Objekten.

Im Bereich der Nanotechnologie allerdings erreichen heutige Röntgenmikroskope ihre Grenze der Bildgebung, da einerseits die Strukturen sehr klein sind und andererseits der Kontrast mit Röntgenstrahlung sehr schwach ist. Aus diesen Gründen wurde die Charakterisierung von Mikrochips bisher mit dem Elektronenmikroskop durchgeführt. Dazu muss der Chip jedoch in einer aufwändigen Prozedur aufgeschnitten und die zu untersuchende Stelle freigelegt werden.

Mit Hilfe eines neuen Röntgenmikroskops, das am Institut für Strukturphysik der
TU Dresden in Zusammenarbeit mit der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble, Frankreich, entwickelt wurde, ist es nun möglich, die feinen Strukturen im Inneren eines Mikrochips zu untersuchen, ohne den Chip in besonderer Weise präparieren zu müssen. Dies war bisher nicht möglich, da die sehr feinen Leiterbahnen und Bauelemente im herkömmlichen Röntgenbild nicht aufgelöst werden konnten und aufgrund des hohen Durchdringungsvermögens der Strahlung nahezu durchsichtig waren.

In dem neuen Mikroskopieverfahren, der sogenannten Ptychographie, wird der Chip mit einem feingebündelten Röntgenstrahl gerastert. An jedem Punkt dieses Rasters wird die gestreute Verteilung des Röntgenlichtes hinter der Probe gemessen. Diese Streubilder enthalten Informationen über die kleinen Strukturen im beleuchteten Bereich der Probe. Aus all diesen Daten kann mit Hilfe des Computers die Struktur der Probe mit hoher Auflösung berechnet werden. Da die feinen Leiterbahnen des Mikrochips das Röntgenlicht stärker streuen als absorbieren, liefern sie in diesem Mikroskop auch einen besseren Kontrast als in herkömmlichen Röntgenmikroskopen.

Eine noch höhere Auflösung und ein besserer Kontrast lassen sich bei dieser Methode schon allein dadurch erreichen, dass die Belichtungszeit vergrößert wird. Dann sollten Auflösungen von unter 10 Nanometern möglich werden. Dazu ist es allerdings wichtig, dass sich die Probe im Röntgenstrahl während der längeren Belichtung nicht bewegt. Ein neues und auf Stabilität optimiertes Mikroskop wird derzeit an der Synchrotronstrahlungsquelle PETRA III bei DESY in Hamburg aufgebaut und soll Röntgenmikroskopie mit weltweit höchster Auflösung ermöglichen.

Ein ausführlicher Artikel zu diesem neuen an der TU Dresden entwickelten Röntgenmikroskop ist soeben im Journal of Microscopy erschienen:

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2818.2010.03453.x/full

Informationen für Journalisten:
Jens Patommel, Tel. 0351 463-38728
E-Mail: patommel@nanoprobe.de

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de/
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2818.2010.03453.x/full

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie